The Gauss Circle Problem

Petru Constantinescu
Supervisor: Dr. Igor Wigman
London School of Geometry and Number Theory

15 May 2018

Outline

(1) Introduction

- Proof by picture
(2) Classical exponent
(3) The method of exponent pairs
- A and B processes
- Application to the Gauss circle problem

References

Introduction

- The Gauss circle problem is the problem of determining the number of integer lattice points inside the circle of radius r centered at the origin. Let $Q(r)$ be the number of lattice points inside a circle in plane of radius r, i.e.

$$
N(r)=\#\left\{(m, n) \in \mathbb{Z}^{2} \mid m^{2}+n^{2} \leq r^{2}\right\}
$$

Introduction

- The Gauss circle problem is the problem of determining the number of integer lattice points inside the circle of radius r centered at the origin. Let $Q(r)$ be the number of lattice points inside a circle in plane of radius r, i.e.

$$
N(r)=\#\left\{(m, n) \in \mathbb{Z}^{2} \mid m^{2}+n^{2} \leq r^{2}\right\}
$$

- $N(r)$ is approximated by the area of the circle, which is πr^{2}. Write

$$
N(r)=\pi r^{2}+E(r) .
$$

Introduction

- The Gauss circle problem is the problem of determining the number of integer lattice points inside the circle of radius r centered at the origin. Let $Q(r)$ be the number of lattice points inside a circle in plane of radius r, i.e.

$$
N(r)=\#\left\{(m, n) \in \mathbb{Z}^{2} \mid m^{2}+n^{2} \leq r^{2}\right\}
$$

- $N(r)$ is approximated by the area of the circle, which is πr^{2}. Write

$$
N(r)=\pi r^{2}+E(r)
$$

- Hence the real problem is to accurately bound $E(r)$. The goal is to find a bound of the form

$$
|E(r)|=O\left(r^{\theta}\right)
$$

for θ as small as possible.

Historical bounds

θ	approx.	Name	Year
1	1	Gauss	1834
$2 / 3$	0.66667	Voronoi Sierpinski van der Corput	1903 1906 1923
$37 / 56$	0.66071	Littlewood and Walfisz	1925
$27 / 41$	0.65854	van der Corput	1928
$35 / 54$	0.64813	Kolesnik	1982
$34 / 53$	0.64151	Vinogradov	1935
$7 / 11$	0.63636	Iwaniec and Mozzochi	1988
$131 / 208$	0.62981	Huxley	2003
$517 / 824$	0.62743	Bourgain and Watt	2017

Historical bounds

θ	approx.	Name	Year
1	1	Gauss	1834
$2 / 3$	0.66667	Voronoi Sierpinski van der Corput	1903 1906 1923
$37 / 56$	0.66071	Littlewood and Walfisz	1925
$27 / 41$	0.65854	van der Corput	1928
$35 / 54$	0.64813	Kolesnik	1982
$34 / 53$	0.64151	Vinogradov	1935
$7 / 11$	0.63636	Iwaniec and Mozzochi	1988
$131 / 208$	0.62981	Huxley	2003
$517 / 824$	0.62743	Bourgain and Watt	2017

Regarding lower bounds, we know that $\lim _{\sup _{x \rightarrow \infty}} \frac{|E(x)|}{x^{1 / 2}(\log x)^{1 / 4}}>0$ (Hardy, 1915). It is conjectured that $E(r)=O\left(r^{1 / 2+\epsilon}\right)$, for all $\epsilon>0$.

Proof by picture

Proof by picture

Proof by picture

We have that $\pi(r-\sqrt{2} / 2)^{2} \leq N(r) \leq \pi(r+\sqrt{2} / 2)^{2}$, so $|E(r)| \leq \sqrt{2} \pi r+\pi / 2$ (hence $E(r)=O(r)$).

Classical exponent - Introduction

Let $\mathbf{1}(r)$ be the characteristic function of the unit disc in plane, i.e.

$$
\mathbf{1}(\mathbf{x})= \begin{cases}1 & \text { if }|\mathbf{x}| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and let $\mathbf{1}_{r}(\mathbf{x})=\mathbf{1}(\mathbf{x} / r)$ the characteristic function of the disc of radius r. Then

$$
N(r)=\sum_{\mathbf{x} \in \mathbb{Z}^{2}} \mathbf{1}_{r}(\mathbf{x})
$$

Classical exponent - Introduction

Let $\mathbf{1}(r)$ be the characteristic function of the unit disc in plane, i.e.

$$
\mathbf{1}(\mathbf{x})= \begin{cases}1 & \text { if }|\mathbf{x}| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and let $\mathbf{1}_{r}(\mathbf{x})=\mathbf{1}(\mathbf{x} / r)$ the characteristic function of the disc of radius r. Then

$$
N(r)=\sum_{\mathbf{x} \in \mathbb{Z}^{2}} \mathbf{1}_{r}(\mathbf{x})
$$

Now let ρ be a positive smooth function on \mathbb{R}^{2} with compact support inside the unit ball and integral one. Also, define

$$
\rho_{\epsilon}(\mathbf{x})=\frac{1}{\epsilon^{2}} \rho\left(\frac{\mathbf{x}}{\epsilon}\right)
$$

so that ρ_{ϵ} is supported inside the ball of radius ϵ and has integral still equal to 1 . Next define

$$
N_{\epsilon}^{\prime}(r)=\sum_{\mathbf{x} \in \mathbb{Z}^{2}}\left(\mathbf{1}_{r} * \rho_{\epsilon}\right)(\mathbf{x})
$$

Classical exponent - Introduction

Let $\mathbf{1}(r)$ be the characteristic function of the unit disc in plane, i.e.

$$
\mathbf{1}(\mathbf{x})= \begin{cases}1 & \text { if }|\mathbf{x}| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and let $\mathbf{1}_{r}(\mathbf{x})=\mathbf{1}(\mathbf{x} / r)$ the characteristic function of the disc of radius r. Then

$$
N(r)=\sum_{\mathbf{x} \in \mathbb{Z}^{2}} \mathbf{1}_{r}(\mathbf{x})
$$

Now let ρ be a positive smooth function on \mathbb{R}^{2} with compact support inside the unit ball and integral one. Also, define

$$
\rho_{\epsilon}(\mathbf{x})=\frac{1}{\epsilon^{2}} \rho\left(\frac{\mathbf{x}}{\epsilon}\right)
$$

so that ρ_{ϵ} is supported inside the ball of radius ϵ and has integral still equal to 1 . Next define

$$
N_{\epsilon}^{\prime}(r)=\sum_{\mathbf{x} \in \mathbb{Z}^{2}}\left(\mathbf{1}_{r} * \rho_{\epsilon}\right)(\mathbf{x})
$$

$$
\begin{aligned}
\left(\mathbf{1}_{r} * \rho_{\epsilon}\right)(\mathbf{x})=1 & \text { if }|\mathbf{x}| \leq r-\epsilon \\
\left(\mathbf{1}_{r} * \rho_{\epsilon}\right)(\mathbf{x})=0 & \text { if }|\mathbf{x}|>r+\epsilon \\
0 \leq\left(\mathbf{1}_{r} * \rho_{\epsilon}\right)(\mathbf{x}) \leq 1 & \text { if } r-\epsilon \leq|\mathbf{x}| \leq r+\epsilon
\end{aligned}
$$

Therefore $N_{\epsilon}^{\prime}(r-\epsilon) \leq N(r) \leq N_{\epsilon}^{\prime}(r+\epsilon)$.

Classical exponent - Poisson summation formula

Theorem (Poisson summation formula)

If $f \in S\left(\mathbb{R}^{n}\right)$, then $\sum_{\mathbf{x} \in \mathbb{Z}^{n}} f(\mathbf{x})=\sum_{\mathbf{x} \in \mathbb{Z}^{n}} \widehat{f}(\mathbf{x})$.

Classical exponent - Poisson summation formula

Theorem (Poisson summation formula)
If $f \in S\left(\mathbb{R}^{n}\right)$, then $\sum_{\mathbf{x} \in \mathbb{Z}^{n}} f(\mathbf{x})=\sum_{\mathbf{x} \in \mathbb{Z}^{n}} \widehat{f}(\mathbf{x})$.

- Applying the formula we have

$$
N_{\epsilon}^{\prime}(r)=\sum_{\mathbf{x} \in \mathbb{Z}^{2}}\left(\mathbf{1}_{r} * \rho_{\epsilon}\right)(\mathbf{x})=\sum_{\mathbf{x} \in \mathbb{Z}^{2}} \widehat{\mathbf{1}_{r} * \rho_{\epsilon}}(\mathbf{x})=\sum \widehat{\mathbf{1}_{r}}(\mathbf{x}) \widehat{\rho}_{\epsilon}(\mathbf{x})
$$

Classical exponent - Poisson summation formula

Theorem (Poisson summation formula)

If $f \in S\left(\mathbb{R}^{n}\right)$, then $\sum_{\mathbf{x} \in \mathbb{Z}^{n}} f(\mathbf{x})=\sum_{\mathbf{x} \in \mathbb{Z}^{n}} \widehat{f}(\mathbf{x})$.

- Applying the formula we have

$$
N_{\epsilon}^{\prime}(r)=\sum_{\mathbf{x} \in \mathbb{Z}^{2}}\left(\mathbf{1}_{r} * \rho_{\epsilon}\right)(\mathbf{x})=\sum_{\mathbf{x} \in \mathbb{Z}^{2}} \widehat{\mathbf{1}_{r} * \rho_{\epsilon}}(\mathbf{x})=\sum \widehat{\mathbf{1}_{r}}(\mathbf{x}) \widehat{\rho_{\epsilon}}(\mathbf{x})
$$

- Next we notice that

$$
\begin{aligned}
& \widehat{\mathbf{1}}_{r}(\xi)=\int_{\mathbb{R}^{2}} \mathbf{1}_{r}(\mathbf{x}) e(-\mathbf{x} \cdot \xi) \mathrm{d} \mathbf{x}=\int_{\mathbb{R}^{2}} \mathbf{1}(\mathbf{y}) e(-r \mathbf{y} \cdot \xi) r^{2} \mathrm{~d} \mathbf{y}=r^{2} \widehat{\mathbf{1}}(r \xi) \\
& \widehat{\rho}_{\epsilon}(\xi)=\int \rho_{\epsilon}(\mathbf{x}) e(-\mathbf{x} \cdot \xi)=\int \rho(\mathbf{y}) e(-\epsilon \mathbf{y} \cdot \xi)=\hat{\rho}(\epsilon \xi)
\end{aligned}
$$

Classical exponent - Poisson summation formula

Theorem (Poisson summation formula)

If $f \in S\left(\mathbb{R}^{n}\right)$, then $\sum_{\mathbf{x} \in \mathbb{Z}^{n}} f(\mathbf{x})=\sum_{\mathbf{x} \in \mathbb{Z}^{n}} \widehat{f}(\mathbf{x})$.

- Applying the formula we have

$$
N_{\epsilon}^{\prime}(r)=\sum_{\mathbf{x} \in \mathbb{Z}^{2}}\left(\mathbf{1}_{r} * \rho_{\epsilon}\right)(\mathbf{x})=\sum_{\mathbf{x} \in \mathbb{Z}^{2}} \widehat{\mathbf{1}_{r} * \rho_{\epsilon}}(\mathbf{x})=\sum \widehat{\mathbf{1}_{r}}(\mathbf{x}) \widehat{\rho_{\epsilon}}(\mathbf{x})
$$

- Next we notice that

$$
\begin{aligned}
& \widehat{\mathbf{1}_{r}}(\xi)=\int_{\mathbb{R}^{2}} \mathbf{1}_{r}(\mathbf{x}) e(-\mathbf{x} \cdot \xi) \mathrm{d} \mathbf{x}=\int_{\mathbb{R}^{2}} \mathbf{1}(\mathbf{y}) e(-r \mathbf{y} \cdot \xi) r^{2} \mathrm{~d} \mathbf{y}=r^{2} \widehat{\mathbf{1}}(r \xi) \\
& \widehat{\rho}_{\epsilon}(\xi)=\int \rho_{\epsilon}(\mathbf{x}) e(-\mathbf{x} \cdot \xi)=\int \rho(\mathbf{y}) e(-\epsilon \mathbf{y} \cdot \xi)=\hat{\rho}(\epsilon \xi)
\end{aligned}
$$

- Since $\widehat{\mathbf{1}}(0)=\pi$ and $\widehat{\rho}(0)=1$, we have that

$$
N_{\epsilon}^{\prime}(r)=\pi r^{2}+r^{2} \sum_{\mathbf{x} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}} \widehat{\mathbf{1}}(r \mathbf{x}) \widehat{\rho}(\epsilon \mathbf{x})
$$

Estimates for $\widehat{1}$ and $\widehat{\rho}$

- We have that $|\widehat{\mathbf{1}}(\mathbf{x})| \ll|\mathbf{x}|^{-3 / 2}$, for $|\mathbf{x}| \geq 1$. Indeed,

$$
\widehat{\mathbf{1}}(\mathbf{x})=\int_{|\mathbf{y}| \leq 1} e^{-2 \pi i(\mathbf{x} \cdot \mathbf{y})} \mathrm{d} \mathbf{y}=\frac{J_{1}(2 \pi|\mathbf{x}|)}{|\mathbf{x}|}
$$

where J_{1} is the Bessel function of the first kind

$$
J_{1}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(y-\sin y)} d y
$$

The estimate follows from the asymptotic formula

$$
J_{1}(|\mathbf{x}|)=\sqrt{\frac{2}{\pi|\mathbf{x}|}}\left(\cos \left(|\mathbf{x}|-\frac{3 \pi}{4}\right)+O\left(|\mathbf{x}|^{-1}\right)\right)
$$

Estimates for $\widehat{\mathbf{1}}$ and $\widehat{\rho}$

- We have that $|\widehat{\mathbf{1}}(\mathbf{x})| \ll|\mathbf{x}|^{-3 / 2}$, for $|\mathbf{x}| \geq 1$. Indeed,

$$
\widehat{\mathbf{1}}(\mathbf{x})=\int_{|\mathbf{y}| \leq 1} e^{-2 \pi i(\mathbf{x} \cdot \mathbf{y})} \mathrm{d} \mathbf{y}=\frac{J_{1}(2 \pi|\mathbf{x}|)}{|\mathbf{x}|}
$$

where J_{1} is the Bessel function of the first kind

$$
J_{1}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(y-\sin y)} d y
$$

The estimate follows from the asymptotic formula

$$
J_{1}(|\mathbf{x}|)=\sqrt{\frac{2}{\pi|\mathbf{x}|}}\left(\cos \left(|\mathbf{x}|-\frac{3 \pi}{4}\right)+O\left(|\mathbf{x}|^{-1}\right)\right)
$$

- Now, since ρ is smooth with compact support, then $\rho \in S\left(\mathbb{R}^{2}\right)$. This implies that also $\widehat{\rho} \in S\left(\mathbb{R}^{2}\right)$. In particular, $|\widehat{\rho}(\mathbf{x})|<_{N}\left(1+|\mathbf{x}|^{2}\right)^{-N}$, for all positive integers N.

Finish proof of the classical exponent

- Now we approximate the error term:

$$
\begin{aligned}
& r^{2} \sum_{\mathbf{x} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}} \widehat{\mathbf{1}}(r \mathbf{x}) \widehat{\rho}(\epsilon \mathbf{x}) \ll r^{1 / 2} \sum_{\mathbf{x} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}}|\mathbf{x}|^{-3 / 2}\left(1+\epsilon^{2}|\mathbf{x}|^{2}\right)^{-2} \\
& \ll r^{1 / 2} \int_{\mathbb{R}^{2} \backslash B_{1}} \frac{\left(1+\epsilon^{2}|\mathbf{x}|^{2}\right)^{-2}}{|\mathbf{x}|^{3 / 2}} \mathrm{~d} \mathbf{x} \ll r^{1 / 2} \epsilon^{-1 / 2} \int_{\mathbb{R}^{2} \backslash B_{1}} \frac{\left(1+|\mathbf{y}|^{2}\right)^{-2}}{|\mathbf{y}|^{3 / 2}} \mathrm{~d} \mathbf{y} \\
& \ll r^{1 / 2} \epsilon^{-1 / 2}
\end{aligned}
$$

Finish proof of the classical exponent

- Now we approximate the error term:

$$
\begin{aligned}
& r^{2} \sum_{\mathbf{x} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}} \widehat{\mathbf{1}}(r \mathbf{x}) \widehat{\rho}(\epsilon \mathbf{x}) \ll r^{1 / 2} \sum_{\mathbf{x} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}}|\mathbf{x}|^{-3 / 2}\left(1+\epsilon^{2}|\mathbf{x}|^{2}\right)^{-2} \\
& \ll r^{1 / 2} \int_{\mathbb{R}^{2} \backslash B_{1}} \frac{\left(1+\epsilon^{2}|\mathbf{x}|^{2}\right)^{-2}}{|\mathbf{x}|^{3 / 2}} \mathrm{~d} \mathbf{x} \ll r^{1 / 2} \epsilon^{-1 / 2} \int_{\mathbb{R}^{2} \backslash B_{1}} \frac{\left(1+|\mathbf{y}|^{2}\right)^{-2}}{|\mathbf{y}|^{3 / 2}} \mathrm{~d} \mathbf{y} \\
& \ll r^{1 / 2} \epsilon^{-1 / 2}
\end{aligned}
$$

- Next we take $\epsilon=r^{-1 / 3}$, so we have that $N_{\epsilon}^{\prime}(r)=\pi r^{2}+O\left(r^{2 / 3}\right)$. Hence

$$
N_{\epsilon}^{\prime}(r+\epsilon)=\pi\left(r+r^{-1 / 3}\right)^{2}+O\left(\left(r+r^{-1 / 3}\right)^{2 / 3}\right)=\pi r^{2}+O\left(r^{2 / 3}\right)
$$

Finish proof of the classical exponent

- Now we approximate the error term:

$$
\begin{aligned}
& r^{2} \sum_{\mathbf{x} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}} \widehat{\mathbf{1}}(r \mathbf{x}) \widehat{\rho}(\epsilon \mathbf{x}) \ll r^{1 / 2} \sum_{\mathbf{x} \in \mathbb{Z}^{2} \backslash\{\mathbf{0}\}}|\mathbf{x}|^{-3 / 2}\left(1+\epsilon^{2}|\mathbf{x}|^{2}\right)^{-2} \\
& \ll r^{1 / 2} \int_{\mathbb{R}^{2} \backslash B_{1}} \frac{\left(1+\epsilon^{2}|\mathbf{x}|^{2}\right)^{-2}}{|\mathbf{x}|^{3 / 2}} \mathrm{~d} \mathbf{x} \ll r^{1 / 2} \epsilon^{-1 / 2} \int_{\mathbb{R}^{2} \backslash B_{1}} \frac{\left(1+|\mathbf{y}|^{2}\right)^{-2}}{|\mathbf{y}|^{3 / 2}} \mathrm{~d} \mathbf{y} \\
& \ll r^{1 / 2} \epsilon^{-1 / 2}
\end{aligned}
$$

- Next we take $\epsilon=r^{-1 / 3}$, so we have that $N_{\epsilon}^{\prime}(r)=\pi r^{2}+O\left(r^{2 / 3}\right)$. Hence

$$
N_{\epsilon}^{\prime}(r+\epsilon)=\pi\left(r+r^{-1 / 3}\right)^{2}+O\left(\left(r+r^{-1 / 3}\right)^{2 / 3}\right)=\pi r^{2}+O\left(r^{2 / 3}\right)
$$

- We obtain a similar estimate for $N_{\epsilon}^{\prime}(r-\epsilon)$. Hence

$$
N(r)=\pi r^{2}+O\left(r^{2 / 3}\right)
$$

The method of exponent pairs

- We want to to find upper bounds for

$$
S=\sum_{n=A}^{B} e(f(n))
$$

where $I=[A, B] \subseteq[N, 2 N](A, B, N$ are positive integers $)$.

The method of exponent pairs

- We want to to find upper bounds for

$$
S=\sum_{n=A}^{B} e(f(n))
$$

where $I=[A, B] \subseteq[N, 2 N](A, B, N$ are positive integers $)$.

- We will work with a " nice" family of functions f such that $f^{\prime}(x)$ is well approximated by $y x^{-s}$, for some $y>0, s>0$. Let $L=y N^{-s}$ (think of it as $L \approx f^{\prime}(x)$).

The method of exponent pairs

- We want to to find upper bounds for

$$
S=\sum_{n=A}^{B} e(f(n))
$$

where $I=[A, B] \subseteq[N, 2 N](A, B, N$ are positive integers $)$.

- We will work with a "nice" family of functions f such that $f^{\prime}(x)$ is well approximated by $y x^{-s}$, for some $y>0, s>0$. Let $L=y N^{-s}$ (think of it as $L \approx f^{\prime}(x)$).
- We would like to find an upper bound of the form

$$
S \ll L^{k} N^{\prime}
$$

for $0 \leq k \leq 1 / 2 \leq I \leq 1$. If this bound holds for all "nice" functions f, we say (k, I) is an exponent pair.

A and B processes

- A process: If (k, l) is an exponent pair, then so is

$$
A(k, I)=\left(\frac{k}{2 k+2}, \frac{k+I+1}{2 k+2}\right)
$$

A and B processes

- A process: If (k, I) is an exponent pair, then so is

$$
A(k, I)=\left(\frac{k}{2 k+2}, \frac{k+I+1}{2 k+2}\right)
$$

- B process: If (k, l) is an exponent pair, then so is

$$
B(k, I)=(I-1 / 2, k+1 / 2)
$$

(easy to see that $\left.B^{2}(k, I)=(k, I)\right)$.

A and B processes

- A process: If (k, l) is an exponent pair, then so is

$$
A(k, I)=\left(\frac{k}{2 k+2}, \frac{k+I+1}{2 k+2}\right)
$$

- B process: If (k, l) is an exponent pair, then so is

$$
B(k, I)=(I-1 / 2, k+1 / 2)
$$

(easy to see that $B^{2}(k, l)=(k, l)$).

- The method consists of deriving new exponent pairs of the form $A^{q_{1}} B A^{q_{2}} B \ldots A^{q_{k}} B(0,1)$ or $B A^{q_{1}} B A^{q_{2}} B \ldots A^{q_{k}} B(0,1)$ and use them to bound exponential sums.

Definitions

Definition

Let N, P, y, s, ϵ be positive numbers with $\epsilon<1 / 2$. We define $\mathbf{F}(N, P, s, y, \epsilon)$ to be the set of functions f with P continuous derivatives on I such that for all $0 \leq p \leq P-1$ and $A \leq x \leq B$

$$
\begin{equation*}
\left|f^{(p+1)}(x)-(-1)^{p}(s)_{p} y x^{-s-p}\right| \leq \epsilon(s)_{p} y x^{-s-p} \tag{1}
\end{equation*}
$$

where $(s)_{0}=1$ and $(s)_{p}=s(s+1) \ldots(s+p-1)$ for $p \geq 1$.

Definitions

Definition

Let N, P, y, s, ϵ be positive numbers with $\epsilon<1 / 2$. We define $\mathbf{F}(N, P, s, y, \epsilon)$ to be the set of functions f with P continuous derivatives on I such that for all $0 \leq p \leq P-1$ and $A \leq x \leq B$

$$
\begin{equation*}
\left|f^{(p+1)}(x)-(-1)^{p}(s)_{p} y x^{-s-p}\right| \leq \epsilon(s)_{p} y x^{-s-p} \tag{1}
\end{equation*}
$$

where $(s)_{0}=1$ and $(s)_{p}=s(s+1) \ldots(s+p-1)$ for $p \geq 1$.
Let

$$
F(x)= \begin{cases}\frac{y x^{1-s}}{1-s} & \text { if } s \neq 1 \tag{2}\\ y \log x & \text { if } s=1\end{cases}
$$

Then (1) can be rewritten as

$$
\begin{equation*}
\left|f^{(p+1)}(x)-F^{(p+1)}(x)\right| \leq \epsilon\left|F^{(p+1)}(x)\right| \tag{3}
\end{equation*}
$$

Definitions

Definition

Let k, I be such that $0 \leq k \leq 1 / 2 \leq I \leq 1$. Suppose that for every $s>0$, there exists $P=P(k, l, s)$ and $\epsilon=\epsilon(k, l, s)<1 / 2$ such that for all $N>0$, $y>0$ and all $f \in \mathbf{F}(N, P, s, y, \epsilon)$, we have that

$$
\begin{equation*}
|S| \ll k, l, s\left(y N^{-s}\right)^{k} N^{\prime}+y^{-1} N^{s} \tag{4}
\end{equation*}
$$

Then we say that (k, I) is an exponent pair.

Definitions

Definition

Let k, l be such that $0 \leq k \leq 1 / 2 \leq I \leq 1$. Suppose that for every $s>0$, there exists $P=P(k, l, s)$ and $\epsilon=\epsilon(k, l, s)<1 / 2$ such that for all $N>0$, $y>0$ and all $f \in \mathbf{F}(N, P, s, y, \epsilon)$, we have that

$$
\begin{equation*}
|S| \ll k, l, s\left(y N^{-s}\right)^{k} N^{\prime}+y^{-1} N^{s} \tag{4}
\end{equation*}
$$

Then we say that (k, l) is an exponent pair.
It is not hard to show that if $L=y N^{-s} \leq 1$, then we obtain satisfactory estimates in elementary ways. Hence the real strength of the method is in the case $L \geq 1$, where the main term is indeed $L^{k} N^{\prime}$.

Application to the Gauss Circle problem -preliminary lemmas

Lemma

$$
N(r)=\pi x^{2}+4 \sum_{d \leq x / 4}\left(\psi\left(\frac{x^{2}}{4 d+3}\right)-\psi\left(\frac{x^{2}}{4 d+1}\right)+\psi\left(\frac{x^{2}}{4 d}-\frac{3}{4}\right)-\psi\left(\frac{x^{2}}{4 d}-\frac{1}{4}\right)\right)+O(1)
$$

where $\psi(x)=\{x\}-1 / 2$.

Application to the Gauss Circle problem -preliminary lemmas

Lemma

$$
N(r)=\pi x^{2}+4 \sum_{d \leq x / 4}\left(\psi\left(\frac{x^{2}}{4 d+3}\right)-\psi\left(\frac{x^{2}}{4 d+1}\right)+\psi\left(\frac{x^{2}}{4 d}-\frac{3}{4}\right)-\psi\left(\frac{x^{2}}{4 d}-\frac{1}{4}\right)\right)+O(1)
$$

where $\psi(x)=\{x\}-1 / 2$.

Lemma

Say (k, l) is an exponent pair and let P and ϵ be the corresponding parameters given by the definition of exponent pairs. If $f \in \mathbf{F}(N, P, s, y, \epsilon)$, then

$$
\left|\sum_{n \in I} \psi(f(n))\right| \ll y^{\frac{k}{k+1}} N^{\frac{(1-s) k+1}{k+1}}+y^{-1} N^{s}
$$

Application to the Gauss circle problem

- Let $f(d)=-x^{2} / 4 d$. Then $f \in \mathbf{F}\left(N, P, 2, x^{2} / 4, \epsilon\right)$, for all $N \leq x / 2$.

Application to the Gauss circle problem

- Let $f(d)=-x^{2} / 4 d$. Then $f \in \mathbf{F}\left(N, P, 2, x^{2} / 4, \epsilon\right)$, for all $N \leq x / 2$.
- We use a dyadic argument. We split the summation into intervals of the form $I_{j}=\left\{n: 2^{-j} x<n \leq 2^{-j+1} x\right\}$ and apply the second lemma.

Application to the Gauss circle problem

- Let $f(d)=-x^{2} / 4 d$. Then $f \in \mathbf{F}\left(N, P, 2, x^{2} / 4, \epsilon\right)$, for all $N \leq x / 2$.
- We use a dyadic argument. We split the summation into intervals of the form $I_{j}=\left\{n: 2^{-j} x<n \leq 2^{-j+1} x\right\}$ and apply the second lemma.
- After completing the calculations, we obtain that if $(k, /)$ is an exponent pair,

$$
\left|\sum_{d \leq x / 4} \psi\left(-\frac{x}{4 d}\right)\right| \ll x^{\frac{k+1}{k+1}}
$$

Application to the Gauss circle problem

- Let $f(d)=-x^{2} / 4 d$. Then $f \in \mathbf{F}\left(N, P, 2, x^{2} / 4, \epsilon\right)$, for all $N \leq x / 2$.
- We use a dyadic argument. We split the summation into intervals of the form $I_{j}=\left\{n: 2^{-j} x<n \leq 2^{-j+1} x\right\}$ and apply the second lemma.
- After completing the calculations, we obtain that if $(k, /)$ is an exponent pair,

$$
\left|\sum_{d \leq x / 4} \psi\left(-\frac{x}{4 d}\right)\right| \ll x^{\frac{k+1}{k+1}}
$$

- If we add a constant to our function f or we consider the slightly different version $f(y)=-x /(4 y+1)$ we obtain the same estimate.

Application to the Gauss circle problem

- Let $f(d)=-x^{2} / 4 d$. Then $f \in \mathbf{F}\left(N, P, 2, x^{2} / 4, \epsilon\right)$, for all $N \leq x / 2$.
- We use a dyadic argument. We split the summation into intervals of the form $I_{j}=\left\{n: 2^{-j} x<n \leq 2^{-j+1} x\right\}$ and apply the second lemma.
- After completing the calculations, we obtain that if $(k, /)$ is an exponent pair,

$$
\left|\sum_{d \leq x / 4} \psi\left(-\frac{x}{4 d}\right)\right| \ll x^{\frac{k+1}{k+1}}
$$

- If we add a constant to our function f or we consider the slightly different version $f(y)=-x /(4 y+1)$ we obtain the same estimate.
- Now take

$$
(k, I)=B A^{3} B(0,1)=\left(\frac{11}{30}, \frac{26}{30}\right) .
$$

Then we have that $E(x) \ll x^{27 / 41}$, where $27 / 41=0.6585 \ldots$.

References

S. W. Graham and G. Kolesnik. van der Corput's method of exponential sums. Vol. 126. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1991, pp. vi +120 . ISBN: 0-521-33927-8. DOI: 10.1017/CB09780511661976. URL:
https://doi.org/10.1017/CB09780511661976.
Lars Hörmander, ed. Seminar on Singularities of Solutions of Linear Partial Differential Equations. Vol. 91. Annals of Mathematics Studies. Held at the Institute for Advanced Study, Princeton, N.J., 1977/78. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979, pp. ix+283. ISBN: 0-691-08221-9; 0-691-08213-8. theory. Vol. 53. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004, pp. xii+615. ISBN: 0-8218-3633-1. DOI'

