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Introduction

The Gauss circle problem is the problem of determining the number
of integer lattice points inside the circle of radius r centered at the
origin. Let Q(r) be the number of lattice points inside a circle in
plane of radius r , i.e.

N(r) = #{(m, n) ∈ Z2 | m2 + n2 ≤ r2} .

N(r) is approximated by the area of the circle, which is πr2. Write

N(r) = πr2 + E (r) .

Hence the real problem is to accurately bound E (r). The goal is to
find a bound of the form

|E (r)| = O
(
rθ
)

for θ as small as possible.
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Historical bounds

θ approx. Name Year
1 1 Gauss 1834

2/3 0.66667
Voronoi 1903

Sierpinski 1906
van der Corput 1923

37/56 0.66071 Littlewood and Walfisz 1925
27/41 0.65854 van der Corput 1928
35/54 0.64813 Kolesnik 1982
34/53 0.64151 Vinogradov 1935
7/11 0.63636 Iwaniec and Mozzochi 1988

131/208 0.62981 Huxley 2003
517/824 0.62743 Bourgain and Watt 2017

Regarding lower bounds, we know that lim supx→∞
|E(x)|

x1/2(log x)1/4 > 0 (Hardy,

1915). It is conjectured that E (r) = O
(
r1/2+ε

)
, for all ε > 0.
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Proof by picture

We have that π(r −
√

2/2)2 ≤ N(r) ≤ π(r +
√

2/2)2, so
|E (r)| ≤

√
2πr + π/2 (hence E (r) = O(r)).
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Classical exponent - Introduction

Let 1(r) be the characteristic
function of the unit disc in plane, i.e.

1(x) =

{
1 if |x| ≤ 1
0 otherwise.

and let 1r (x) = 1(x/r) the
characteristic function of the disc of
radius r . Then

N(r) =
∑
x∈Z2

1r (x)

Now let ρ be a positive smooth
function on R2 with compact support
inside the unit ball and integral one.
Also, define

ρε(x) =
1

ε2
ρ
(x
ε

)
so that ρε is supported inside the ball
of radius ε and has integral still equal
to 1. Next define

N ′ε(r) =
∑
x∈Z2

(1r ∗ ρε)(x)

(1r ∗ ρε)(x) = 1 if |x| ≤ r − ε
(1r ∗ ρε)(x) = 0 if |x| > r + ε

0 ≤ (1r ∗ ρε)(x) ≤ 1 if r − ε ≤ |x| ≤ r + ε.

Therefore N ′ε(r − ε) ≤ N(r) ≤ N ′ε(r + ε) .
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Classical exponent - Poisson summation formula

Theorem (Poisson summation formula)

If f ∈ S(Rn), then
∑

x∈Zn f (x) =
∑

x∈Zn f̂ (x).

Applying the formula we have

N ′ε(r) =
∑
x∈Z2

(1r ∗ ρε)(x) =
∑
x∈Z2

1̂r ∗ ρε(x) =
∑

1̂r (x)ρ̂ε(x)

Next we notice that

1̂r (ξ) =

∫
R2

1r (x)e(−x.ξ) dx =

∫
R2

1(y)e(−ry.ξ)r2 dy = r2 1̂(rξ)

ρ̂ε(ξ) =

∫
ρε(x)e(−x.ξ) =

∫
ρ(y)e(−εy.ξ) = ρ̂(εξ)

Since 1̂(0) = π and ρ̂(0) = 1, we have that

N ′ε(r) = πr2 + r2
∑

x∈Z2\{0}

1̂(rx)ρ̂(εx)
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Estimates for 1̂ and ρ̂

We have that
∣∣∣1̂(x)

∣∣∣� |x|−3/2, for |x| ≥ 1. Indeed,

1̂(x) =

∫
|y|≤1

e−2πi(x.y) dy =
J1(2π|x|)
|x|

where J1 is the Bessel function of the first kind

J1(x) =
1

2π

∫ π

−π
e i(y−sin y) dy

The estimate follows from the asymptotic formula

J1(|x|) =

√
2

π|x|

(
cos(|x| − 3π

4
) + O(|x|−1)

)

Now, since ρ is smooth with compact support, then ρ ∈ S(R2). This
implies that also ρ̂ ∈ S(R2). In particular, |ρ̂(x)| �N (1 + |x|2)−N , for
all positive integers N.
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Finish proof of the classical exponent

Now we approximate the error term:

r2
∑

x∈Z2\{0}

1̂(rx)ρ̂(εx)� r1/2
∑

x∈Z2\{0}

|x|−3/2(1 + ε2|x|2)−2

� r1/2
∫
R2\B1

(1 + ε2|x|2)−2

|x|3/2
dx� r1/2ε−1/2

∫
R2\B1

(1 + |y|2)−2

|y|3/2
dy

� r1/2ε−1/2

Next we take ε = r−1/3, so we have that N ′ε(r) = πr2 + O(r2/3).
Hence

N ′ε(r + ε) = π(r + r−1/3)2 + O((r + r−1/3)2/3) = πr2 + O(r2/3)

We obtain a similar estimate for N ′ε(r − ε). Hence

N(r) = πr2 + O(r2/3) .
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The method of exponent pairs

We want to to find upper bounds for

S =
B∑

n=A

e(f (n))

where I = [A,B] ⊆ [N, 2N] (A,B,N are positive integers).

We will work with a ”nice” family of functions f such that f ′(x) is
well approximated by yx−s , for some y > 0, s > 0. Let L = yN−s

(think of it as L ≈ f ′(x)).

We would like to find an upper bound of the form

S � LkN l

for 0 ≤ k ≤ 1/2 ≤ l ≤ 1. If this bound holds for all ”nice” functions
f , we say (k , l) is an exponent pair.
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A and B processes

A process: If (k , l) is an exponent pair, then so is

A(k , l) =

(
k

2k + 2
,
k + l + 1

2k + 2

)

B process: If (k , l) is an exponent pair, then so is

B(k , l) = (l − 1/2, k + 1/2)

(easy to see that B2(k , l) = (k , l)).

The method consists of deriving new exponent pairs of the form
Aq1BAq2B . . .AqkB(0, 1) or BAq1BAq2B . . .AqkB(0, 1) and use them
to bound exponential sums.
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Definitions

Definition

Let N,P , y , s, ε be positive numbers with ε < 1/2. We define
F(N,P , s, y , ε) to be the set of functions f with P continuous derivatives
on I such that for all 0 ≤ p ≤ P − 1 and A ≤ x ≤ B∣∣∣f (p+1)(x)− (−1)p(s)pyx

−s−p
∣∣∣ ≤ ε(s)pyx

−s−p (1)

where (s)0 = 1 and (s)p = s(s + 1) . . . (s + p − 1) for p ≥ 1.

Let

F (x) =

{
yx1−s

1−s if s 6= 1

y log x if s = 1
(2)

Then (1) can be rewritten as∣∣∣f (p+1)(x)− F (p+1)(x)
∣∣∣ ≤ ε ∣∣∣F (p+1)(x)

∣∣∣ (3)
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Definitions

Definition

Let k , l be such that 0 ≤ k ≤ 1/2 ≤ l ≤ 1. Suppose that for every s > 0,
there exists P = P(k , l , s) and ε = ε(k , l , s) < 1/2 such that for all N > 0,
y > 0 and all f ∈ F(N,P , s, y , ε), we have that

|S | �k,l ,s (yN−s)kN l + y−1Ns (4)

Then we say that (k , l) is an exponent pair.

It is not hard to show that if L = yN−s ≤ 1, then we obtain satisfactory
estimates in elementary ways . Hence the real strength of the method is in
the case L ≥ 1, where the main term is indeed LkN l .
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|S | �k,l ,s (yN−s)kN l + y−1Ns (4)
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Application to the Gauss Circle problem -preliminary
lemmas

Lemma

N(r) = πx2 + 4
∑

d≤x/4

(
ψ

(
x2

4d + 3

)
− ψ

(
x2

4d + 1

)
+ ψ

(
x2

4d
−

3

4

)
− ψ

(
x2

4d
−

1

4

))
+ O(1)

where ψ(x) = {x} − 1/2.

Lemma

Say (k , l) is an exponent pair and let P and ε be the corresponding
parameters given by the definition of exponent pairs. If
f ∈ F(N,P, s, y , ε), then∣∣∣∣∣∑

n∈I
ψ(f (n))

∣∣∣∣∣� y
k

k+1N
(1−s)k+l

k+1 + y−1Ns
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Application to the Gauss circle problem

Let f (d) = −x2/4d . Then f ∈ F(N,P , 2, x2/4, ε), for all N ≤ x/2.

We use a dyadic argument. We split the summation into intervals of
the form Ij = {n : 2−jx < n ≤ 2−j+1x} and apply the second lemma.

After completing the calculations, we obtain that if (k , l) is an
exponent pair, ∣∣∣∣∣∣

∑
d≤x/4

ψ
(
− x

4d

)∣∣∣∣∣∣� x
k+l
k+1

If we add a constant to our function f or we consider the slightly
different version f (y) = −x/(4y + 1) we obtain the same estimate.

Now take

(k , l) = BA3B(0, 1) =

(
11

30
,

26

30

)
.

Then we have that E (x)� x27/41, where 27/41 = 0.6585....
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