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Abstract. We provide a new and simple automorphic method using Eisen-
stein series to study the equidistribution of modular symbols modulo primes,
which we apply to prove an average version of a conjecture of Mazur and Ru-
bin. More precisely, we prove that modular symbols corresponding to a Hecke
basis of weight 2 cusp forms are asymptotically jointly equidistributed mod
p while we allow restrictions on the location of the cusps. As an application,
we obtain a residual equidistribution result for Dedekind sums. Furthermore,
we calculate the variance of the distribution and show a surprising bias with
connections to perturbation theory. Additionally, we prove the full conjecture
in some particular cases using a connection to Eisenstein congruences. Finally,
our methods generalise to equidistribution results for cohomology classes of
finite volume quotients of n-dimensional hyperbolic space.

1. Introduction

Modular symbols are certain periods of weight 2 cusp forms introduced by Birch
and Manin and they are an indispensable tool for studying (twisted) L-functions of
holomorphic cusp forms [25], [27] and for computing modular forms [11]. Modular
symbols define elements of certain cohomology groups and the results of this paper
thus fit into a bigger picture of the study of (co)homology of arithmetic groups,
which has received a lot of attention recently [2], [7] due to their deep connections
with number theory coming from [39].

Recently, Mazur and Rubin initiated the study of the arithmetic distribution
of modular symbols and put forward a number of conjectures [29], which have
received a lot of attention, see the work of Petridis–Risager [34], Bettin–Drappeau
[3], Blomer et al. [4, Chapter 9], Diamantis et al. [12], Lee–Sun [23], Sun [47],
Nordentoft [32], Constantinescu [10]. One of these conjectures (see [28]) predicts
that (normalised) modular symbols should equidistribute among the residue classes
modulo p. Recently, an average version of this conjecture was settled by Lee and
Sun [23, Theorem I] using dynamical methods. In this paper we introduce a new
automorphic method for studying the mod p distribution of modular symbols, which
also applies to more general cohomology classes. As is the case in [23], we obtain an
average version of the mod p conjecture of Mazur and Rubin (and its generalisations),
but with further refinements. Using different arguments, we can actually prove the
full conjecture in some special cases (specific p and specific cusp forms), see Section
3.
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Our automorphic methods enable us to deal with a much more general setup
compared to the work of Lee and Sun and thus we obtain a number of new results:

(1) Firstly, we obtain joint equidistribution for the mod p values of modular
symbols (appropriately normalised) associated to a Hecke basis of weight 2
cusp forms restricted to cusps which lie in a fixed interval of R/Z.

(2) We calculate the variance of the distribution and show a surprising bias for
large p.

(3) We show some particular cases of the full conjecture using connections with
Eisenstein congruences.

(4) As an application of our method, we obtain a residual equidistribution result
for Dedekind sums.

(5) Lastly, we extend the equidistribution results to classes in the cohomology
of general finite volume quotients of higher dimensional hyperbolic spaces.

We note that in the case of higher dimensional hyperbolic spaces there is interesting
torsion in the cohomology. The breakthrough of Scholze [39] established that such
torsion classes have associated Galois representations (at least when the dimension is
three). This was actually our original motivation for studying the higher dimensional
cases. Furthermore, Bergeron and Venkatesh [2] have conjectured that, at least
in the three dimensional case, there is an abundance of torsion in the relevant
cohomology group. In this paper we are able to shed light on the distribution
properties of these cohomology classes. In Appendix A we will survey what is
known about the dimensions of the cohomology groups, which our results apply to.

1.1. Results for modular symbols. Let us state the result in the simplest case
for the two dimensional hyperbolic space in an arithmetic setup. We define the
modular symbol map associated to a weight 2 and level N cusp form f ∈ S2(Γ0(N))
as the map

(1.1) Q 3 r 7→ 〈r, f〉 := 2πi
∫ i∞

r

f(z)dz,

where the contour integral is taken along a vertical line. One way to think about
this map is as the Poincaré pairing on Γ0(N)\H2 between the 1-form 2πif(z)dz
and the homology class of paths containing the geodesic from r to i∞.

Now assume that f is a rational Hecke-normalised eigenform. Then by [29, Sec.
1], there exist periods Ωf,+ and Ωf,− such that for all a/q ∈ Q with N |q, we have
m±f (a/q) ∈ Z with full image, where

m±f (a/q) := 1
Ωf,±

(〈a/q, f〉 ± 〈−a/q, f〉) .(1.2)

In this context Mazur and Rubin conjectured the following in the case where f = fE
corresponds to an elliptic curve E/Q.

Conjecture 1.1 (Mazur–Rubin). Let E be an elliptic curve defined over Q. Let p
be a prime such that the residual representation ρE,p is irreducible and E has good
and ordinary reduction at p. Then for any b mod p, we have

#{a ∈ (Z/qZ)× : m±fE (a/q) ≡ b mod p}
ϕ(q) = 1

p
+ o(1),

as q →∞.
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This conjecture seems way out of reach but we will instead consider an averaged
version over the denominator q. More precisely, given a basis of the space of rational
Hecke newforms (i.e newforms with rational Hecke eigenvalues) f1, . . . , fd and a
prime p, we will consider the map

r 7→ mN,p(r) := (m+
f1

(r),m−f1
(r), . . . ,m−fd(r), r) ∈ (Z/pZ)2d × (R/Z)

as a random variable defined on the (averaged) outcome space

(1.3) ΩQ,N := {a/q | 0 < a < q ≤ Q, (a, q) = 1, N |q}

endowed with the uniform probability measure. Then we have the following equidis-
tribution result.

Theorem 1.2. The random variables mN,p defined on the outcome spaces ΩQ,N
converge in distribution to the uniform distribution on (Z/pZ)2d×(R/Z) as Q→∞.
More precisely, for any fixed a ∈ (Z/pZ)2d and any interval I ⊂ R/Z, we have

#
{
a/q ∈ ΩQ,N ∩ I | (m+

f1
(a/q), . . . ,m−fd(a/q)) ≡ a mod p

}
#ΩQ,N

= |I|
p2d + o(1)

as Q→∞.

Remark 1.3. Similarly, we can prove equidistribution modulo pn for any n ≥ 1
(see Theorem 1.10 below). This translates to the fact that the random variables
(m+

f1
, . . . ,m−fd) considered as maps ΩQ,N ∩ I → Qp are asymptotically distributed

with respect to the (multivariate) standard p-adic Gaußian (as defined in for instance
[50]).

The next natural question is to ask how well the values equidistribute. We
answer this by studying the “variance” of the residual distribution modulo p of the
random variables m±f on the sample space ΩQ,N . Furthermore, we show an analogue
of Chebyshev bias for large p, in the sense that the modular symbols are “biased”
towards the residue class 0 mod p.

Theorem 1.4. For large enough p, there exist constants cp, δp>0 such that

∑
a∈Z/pZ

(
#{b/q ∈ ΩQ,N | m±f (b/q) ≡ a mod p}

#ΩQ,N
− 1
p

)2

∼ cpQ−δp

as Q→∞. Moreover, as p→∞, we have that cp = 2/p2 +O(p−4) and δp → 0.
Furthermore, for p large enough, we have for Q large enough (depending on p)

that:

#{b/q ∈ ΩQ,N | m±f (b/q) ≡ a mod p} ≤ #{b/q ∈ ΩQ,N | m±f (b/q) ≡ 0 mod p},
(1.4)

with equality exactly if a ≡ 0 mod p.

Remark 1.5. We explicitly evaluate the constant δp and moreover we obtain asymp-
totics for the deviation from the mean for different residue classes when p is large,
see Section 6.4 for more details.

We can also show that some specific cases of the conjecture of Mazur and Rubin
hold, that is without taking an extra average. We employ a result of Mazur [26]
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which relates modular symbols mod p and Dirichlet characters via Eisenstein con-
gruences, but we need to restrict to certain pairs of primes (N, p) in order to use a
multiplicity one result. We obtain the following result.

Theorem 1.6. Let (N, p) be a pair of ‘admissible primes’ such that p|N − 1. Then
there exists a newform f ∈ S2(Γ0(N)) of weight 2 and level N such that the values
of m+

f on {aq | (a, q) = 1, 0 < a < q} equidistribute exactly modulo p, for all q with
q ≡ 0 mod N .

We refer to Section 3 for the definition of an admissible pair. Note that all pairs
of primes (N, p) with N < 250 such that p ≥ 5 and p|N − 1 are admissible unless
N = 31, 103, 127, 131, 181, 199, 211.

Remark 1.7. Using ideas related to the proof of Theorem 1.6 we also deduce residual
equidistribution for Dedekind sums (see Corollary 6.3).

Remark 1.8. We note that in [23], the slightly larger outcome space {a/q | 0 < a <
q ≤ Q, (a, q) = 1} is considered (following Mazur and Rubin), that is, without the
condition that N |q. In fact, equidistribution on this outcome space does not hold
in the generality above. One has to exclude some bad primes p as in Conjecture 1.1
(see also Remark 3.3 below). Our methods can also deal with this larger outcome
space, by considering the Fourier expansion of Eisenstein series at different cusps,
as is done in [34] or [10]. The outcome space ΩQ,N above is, however, very natural
from the cohomological perspective and for simplicity we will restrict to this case.

1.2. Generalisations to higher dimensions. We observe that the modular sym-
bols map gives rise to a map Γ0(N) → C by putting 〈γ, f〉 := 〈γ∞, f〉, where
γ∞ = a/c with a, c the left upper and lower entries of γ ∈ Γ0(N). By shifting the
contour and doing a change of variable we see that

〈γ1γ2, f〉 = 〈γ1, f〉+ 2πi
∫ γ1γ2∞

γ1∞
f(z)dz = 〈γ1, f〉+ 〈γ2, f〉,(1.5)

which shows that modular symbols define additive characters on Γ0(N).
More generally, let SO(n+ 1, 1) be the special orthogonal group with signature

(n+ 1, 1), which we identity with the group of isometries of the (n+ 1)-dimensional
upper half space Hn+1. Note that the case n = 2 corresponds to Kleinian groups
due to the exceptional isomorphism SO(3, 1) ∼= SL2(C). Let Γ ⊂ SO(n + 1, 1) be
a discrete and co-finite subgroup. Assume that the associated symmetric space
Γ\Hn+1 has a cusp at∞ and let Γ′∞ ⊂ Γ be the parabolic subgroup fixing∞. Note
that since Γ is discrete, there exists a lattice Λ < Rn such that Γ′∞ is exactly the
group of motions corresponding to translations by Λ. We obtain distribution results
for unitary characters of Γ′∞\Γ/Γ′∞ (see Theorem 1.10) analogues to the results on
modular symbols above.

Our distribution results are with respect to a natural arithmetic ordering on
Γ′∞\Γ/Γ′∞ which generalises the ordering in the definition of ΩQ,N above. To define
this, we use the Vahlen model SVn−1 for the group of isometries of Hn+1 consisting
of 2× 2 matrices over a specific Clifford algebra, introduced in [1] (see Section 4.2
below for a detailed construction). This model provides a natural generalisation
to n > 2 of the familiar models SV0 = SL2(R) and SV1 = SL2(C). We define the
following outcome space:
(1.6) TΓ(X) = {γ ∈ Γ′∞\Γ/Γ′∞ | 0 < |cγ | < X} ,
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where γ =
(
aγ bγ
cγ dγ

)
∈ SVn−1 in the Vahlen group model and |·| denotes the norm

on the relevant Clifford algebra. This generalizes the outcome space (1.3) above
and the ones considered for n = 1 in [34], [32] and for n = 2 in [10].

We will start by describing a basis-independent corollary of our general distribu-
tion result. Let Γab = Γ/[Γ,Γ] be the abelization of Γ ⊂ SO(n + 1, 1) and denote
by Γ′∞ the image of Γ′∞ in Γab under the natural projection. Then we define

Γab,∞ := Γab/Γ′∞,
which is some finitely generated abelian group. Considering the distribution (using
the above ordering) of the natural projection map

ρm : Γ′∞\Γ/Γ′∞ → Γab,∞ ⊗ (Z/mZ),
given some integer m ≥ 2, we get the following result.

Theorem 1.9. The multi-sets {ρm(γ) | γ ∈ TΓ(X)} equidistribute in
Γab,∞ ⊗ (Z/mZ) (with respect to the counting measure) as X →∞.

1.3. Distribution of cohomology classes. Theorem 1.9 is a corollary of a more
general distribution result for unitary characters of Γ trivial on Γ′∞ or, equivalently,
elements of the cohomology group H1

Γ′∞(Γ,R/Z) (as defined in the beginning of
Section 3) . These cohomology groups have been studied in many contexts (e.g.
[37], [15, Chap. 7]).

To state the result we will need some notation. Let d ≥ 1 be an integer. Then we
say that ω1, . . . , ωd ∈ H1

Γ′∞(Γ,R/Z) are in general position, if for any (n1, . . . , nd) ∈
Zd, we have

n1ω1+. . .+ndωd = 0 ∈ H1
Γ′∞(Γ,R/Z)⇔

(
niωi = 0 ∈ H1

Γ′∞(Γ,R/Z),∀i = 1, . . . , d
)
.

As an example one can pick ω1, . . . , ωd to be a Fp-basis for H1
Γ′∞(Γ,Z/pZ). We

notice that the image of any ω ∈ H1(Γ,R/Z) is either dense in R/Z or finite (recall
that ω defines an additive character Γ→ R/Z). In the first case we put Jω = R/Z
and in the latter case we put Jω = Z/mZ, where m is the cardinality of the image
of ω. We equip R/Z and Z/mZ with the obvious choices of probability measures,
Lebesgue and uniform respectively. Finally associated to γ ∈ Γ′∞\Γ/Γ′∞, we define
the invariant γ∞ ∈ (Rn ∪{∞})/Λ using the action of SO(n+ 1, 1) on the boundary
of Hn+1, see Section 4.3 for more details. Then we have the following distribution
result.

Theorem 1.10. Let ω1, . . . , ωd ∈ H1
Γ′∞(Γ,R/Z) be in general position. Then the

random variables γ 7→ (ω1(γ), . . . , ωd(γ), γ∞) defined on the outcome spaces TΓ(X)
are asymptotically uniformly distributed on

∏d
i=1 Jωi × (Rn/Λ) as X → ∞. More

precisely, for any fixed (continuity) subsets Ai ⊂ Jωi and B ⊂ Rn/Λ, we have

#
{
γ ∈ TΓ(X) | (ω1(γ), . . . , ωd(γ)) ∈

∏d
i=1Ai, γ∞ ∈ B

}
#TΓ(X) =

d∏
i=1

|Ai|
|Jωi |

· |B|
vol(Rn/Λ)+o(1)

as X →∞.

Remark 1.11. The Vahlen model has been used before to study automorphic forms
on Hn+1, for example by Elstrodt, Grunewald, and Mennicke [14] to prove a gen-
eralisation of the Selberg Conjecture regarding the first non-zero eigenvalue of the
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Laplacian and by Södergren [46] for proving equidistribution of horospheres on
Hn+1.

Remark 1.12. Notice that the number of choices of cohomology classes inH1
Γ′∞(Γ,R/Z)

in general position is infinite unless Γ/〈[Γ,Γ],Γ′∞〉 is torsion, where [Γ,Γ] denotes
the commutator subgroup of Γ. See Appendix A for a survey of results on the size
of H1

Γ′∞(Γ,R/Z).

The structure of the paper is as follows. In Section 2 we give a sketch proof of
Theorem 1.2 in its simplest form emphasizing the main ideas, including the use of
the analytic properties of the Eisenstein series. In Section 3, we prove Theorem
1.6 using that Hecke characters define unitary characters of congruence subgroups,
which in turn are connected to Eisenstein congruences. In Section 4, we introduce
some geometric and arithmetic properties of Hn+1, including the Vahlen model
to study cofinite subgroups of isometries. In Section 5, we develop the analytic
properties of the n-dimensional twisted Eisenstein series and the spectral properties
of the twisted Laplacian. In Section 6, we use the tools developed in the previous
sections to prove our main results. In Appendix A, we give a detailed literature
survey on the structure of the cohomology groups, to which our results apply.
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2. Idea of proof

We will sketch the proof of Theorem 1.2 in the simplest case, which is the one
dealt with in [23], where we consider only one cusp form for H2 and no restrictions
on the location of r = a/q in R/Z. Our method is automorphic in nature and relies
on the theory of Eisenstein series. It can be seen as a discrete version of the method
introduced by Petridis and Risager in [33] for studying the distribution of modular
symbols. They consider the perturbation of the family of characters χε as ε → 0,
whereas we consider the discrete family χm for m ∈ Z.

Let f ∈ S2(Γ0(N)) be a Hecke eigenform of weight 2 and levelN and letm±f : Q→
Z be the associated normalised modular symbols defined above. We would like to
show that the values of m±f on the set ΩQ,N = {a/q | 0 < a < q ≤ Q, (a, q) = 1, N |q}
equidistribute mod p (with p prime, say) as Q→∞.

Recall from (1.5) that modular symbols define additive characters. For any
l ∈ (Z/pZ)×, we define the unitary character:

χl : Γ0(N)→ C×, γ 7→ e2πim±
f

(γ∞)l/p.
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By Weyl’s Criterion [20, page 487] in order to conclude equidistribution, it suffices
to detect cancelation in the Weyl sums; that is to prove for all l ∈ (Z/pZ)× that∑

a/q∈ΩQ,N

χl(a/q) = o(Q2),

as Q→∞, where χl(a/q) := χl (γ) for any γ ∈ Γ0(N) with γ∞ = a/q.
Now, the key observation is that the generating series for these Weyl sums

appears very naturally as the constant term of an appropriate Eisenstein series.
The cancelation in the Weyl sums is now a simple analytic consequence of the
analytic properties of the corresponding Eisenstein series. To be precise; associated
to χl we have the following twisted Eisenstein series:

E(z, s, χl) =
∑

γ∈Γ∞\Γ0(N)

χl(γ) Im(γz)s,

where Γ∞ = 〈( 1 1
0 1 )〉. This Eisenstein series defines a holomorphic function for

Re s > 1 and by the work of Selberg [40, Chap. 39] admits meromorphic continuation
to the entire complex plane with a pole at s = 1 if and only if χl is trivial. Note
that in general the character χl might not come from an adelic one, but Selberg’s
theory applies equally well.

Now a standard calculation using Poisson summation shows that the constant
term of the Fourier expansion of E(z, s, χl) is given by

ys + π1/2y1−sΓ(s− 1/2)
Γ(s) Ll(s),

with

Ll(s) :=
∑

c>0,N |c

 ∑
0<d<c,(c,d)=1

χl
((

a b
c d

)) c−2s,

where
(
a b
c d

)
is a(-ny) matrix in Γ0(N) with lower entries c, d. We observe that Ll(s)

is exactly the generating series for the Weyl sums above, as promised.
Now from the meromorphic continuation of the Eisenstein series itself, we also get

meromorphic continuation of the generating series Ll(s), and since χl is non-trivial
we conclude that Ll(s) is analytic for Re s > 1 − δ for some δ > 0. Thus we get
the wanted cancelation in Weyl sums using the standard machinery from complex
analysis if we can get bounds on vertical lines of Ll(s). It turns of that such bounds
follow from the general bound for scattering matrices also due to Selberg, and thus
we are done.

This shows how to deduce equidistribution of modular symbols using Eisenstein
series. The proof for classes in the first cohomology of quotients of higher dimen-
sional hyperbolic spaces uses the same idea, although some parts of the argument
require some more technical work (see Section 5). In order to obtain equidistribution
results when restricting the cusps to a specific interval I ⊂ R/Z, we will have to
use all the Fourier coefficients of the Eisenstein series following [34].

3. Some special cases of the conjecture of Mazur and Rubin

In this section we will consider certain special cases of the conjectures of Mazur
and Rubin (and the generalization to H3), which we can resolve without taking an
extra average. These special cases correspond to the fact that Hecke characters
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define unitary characters of congruence subgroups, which in turn are connected to
Eisenstein congruences as studied intensively by Mazur in [26, Section 9] and [27].

First of all we will define the relevant cohomology classes and introduce the
Hecke operators in this context. We will work with the first group cohomology
group H1(G,X) defined for a group G and a Z[G]-module X (as defined in [44, Sec.
8.1], see also Appendix A.2), which in the case of X having the trivial G action
we will identify with X-valued characters of G. Furthermore we will denote for a
subset P ⊂ G :

H1
P (G,X) := {ω ∈ H1(G,X) | ω(p) = 0,∀p ∈ P}.

Recall that for a discrete, cofinite subgroup Γ ⊂ SL2(k) with k = R or C and an
element α ∈ Γ̃ (here Γ̃ denotes the commensurator of Γ), we have a decomposition

ΓαΓ =
d⊔
i=1

Γαi

for some α1, . . . , αd ∈ Γ̃. Using this we define the Hecke operator Tα acting on the
cohomology group H1(Γ, X) with X a trivial Γ-module as:

(Tαω)(γ) :=
d∑
i=1

ω(γi),(3.1)

where αiγ = γiασ(i) with γi ∈ Γ and σ some permutation of {1, . . . d} (see [44, Sec.
8.3]).

We will consider the case of congruence subgroups

Γ0(f) = {γ ∈ SL2(OK) | γ ≡ ( ∗ ∗0 ∗ ) mod f},

where K is equal to Q or an imaginary quadratic extension thereof and f is a non-
trivial ideal of OK . In this case the commensurator is given by Γ̃0(f) = GL2(K) and
the parabolic subgroup fixing ∞ is Γ′∞ =

(±1 OK
0 ±1

)
. We say that a Hecke operator

is good if it is of the form Tα with α = ( a 0
0 1 ) and gcd(f, (a)) = 1.

Proposition 3.1. Let m be an odd integer diving | (OK/f)× |. Then there exists a
class ω ∈ H1

Γ′∞(Γ0(f),Z/mZ), which is an eigenvector for all good Hecke operators
and such that for all a ∈ Z/mZ and c0 ∈ f, it satisfies

#{γ ∈ Γ∞\Γ0(f)/Γ∞ | cγ = c0, ω(γ) = a}
#{γ ∈ Γ∞\Γ0(f)/Γ∞ | cγ = c0}

= 1
m
,(3.2)

where cγ denotes the lower left entry of γ. That is, the values of the class ω
equidistribute exactly.

Proof. Let χ : (OK/f)× → C× be a unitary Hecke character of order m. Then we
define a character of Γ0(f) by

(3.3)
(
a b
c d

)
7→ χ(d).

This character is clearly trivial on Γ′∞ since the order m of χ is odd, and thus (3.3)
defines an element ωχ ∈ H1

Γ′∞(Γ0(f),Z/mZ) using the identification between unitary
characters and cohomology classes mentioned above. We notice that ωχ factors
through a map

ω̃χ : {
(
a b
0 d
)
∈ GL2(OK/f)} → C×.
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Now for Tα a good Hecke operator, it is easy to check that αi (with notation as in
(3.1)) can all be chosen of the form ( ∗ ∗0 ∗ ) with determinant equal to the determinant
of α. Thus the diagonal entries of the αi’s are coprime to f and αi, α−1

i can both
be thought of as elements of GL2(OK/f). Combining this with γi = αiγα

−1
σ(i), one

easily sees that

(Tα(ωχ)) (γ) =
d∑
i=1

ω̃χ(αi) + ωχ(γ) + ω̃χ(α−1
σ(i))

= dωχ(γ),

where d = |Γ0(f)\Γ0(f)αΓ0(f)|, using here that σ is a permutation of {1, . . . , d}.
This shows that ωχ is an Hecke eigenclass with eigenvalue d, as wanted.

Finally, recall the basic fact that a set of representatives of Γ∞\Γ0(f)/Γ∞ is given
by

{( ∗ ∗c d ) | c ∈ f, d ∈ (OK/(c))×}.
From this, the equidistribution statement (3.2) follows directly. �

It is a natural question to ask how the cohomology classes constructed above
are related to the modular symbols defined in (1.2). To tackle this we need to
understand so-called Eisenstein congruences, which have been studied intensively
by Mazur [26]. We will now introduce some required terminology and refer to [26]
for a detailed account: We say that a pair of primes (N, p) with N, p ≥ 5 and p|N−1
is admissible if the local ring TP has rank 1 over Zp where T is the Hecke algebra
of level N and P ⊂ T is the Eisenstein prime corresponding to p. In classical terms
(N, p) being admissible means that there is a unique cuspidal Hecke eigenform of
level N which is congruent to the Eisenstein series of weight 2 (i.e. f ∈ S2(Γ0(N))
s.t. the Hecke eigenvalues satisfy λf (l) ≡ l+1 mod p for primes l 6= N and Uf = −f
where U is the Hecke operators at N). By a computation of Merel [30], (N, p) is
admissible exactly if

p−1∏
k=1

((k(N − 1)/p)!)k,

is a p-power in (Z/NZ)×. Note that all pairs of primes (N, p) with N < 250
are admissible unless N = 31, 103, 127, 131, 181, 199, 211 (see the remark [26, p.
141]). In the admissible case we have the following strengthening of Proposition 3.1
(see [26, Chapter II, Proposition 18.8] for a related result).

Theorem 3.2. For an admissible pair of primes (N, p) with N, p ≥ 5 and p|N − 1,
there exists a Hecke eigenform f ∈ S2(Γ0(N)) of weight 2 and level N such that
the values of m+

f (defined as in (1.2)) on {aq | (a, q) = 1, 0 < a < q} equidistribute
exactly modulo p for q ≡ 0 mod p.

Proof. Let χ be a Dirichlet character mod N of order p|N −1. Then by Proposition
3.1 we have an associated cohomology class ωχ ∈ H1

Γ∞(Γ0(N),Z/pZ) which equidis-
tributes exactly and such that Tlωχ = (l + 1)ωχ for all primes l 6= N , where Tl is
the Hecke operator corresponding to the matrix ( l 0

0 1 ). Furthermore, ωχ satisfies
Uωχ = −ωχ, where U is the Hecke operator at the bad primeN given by conjugation
by ( 0 1

N 0 ). Also ωχ is trivial on the stabilizer 〈
(±1 0

1 ±1
)
〉 of the cusp 0 (using that the

order of χ is odd) and thus ωχ defines a parabolic cohomology class, i.e. an element
of H1

P (Γ0(N),Z/pZ) (defined as above) where P = {γ ∈ Γ0(N) | γ parabolic}.
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As there is no p-torsion in Γ0(N) (since p > 3), H1
P (Γ0(N),Z/pZ) is a 2g-

dimensional vector space over Fp with g = dimC(S2(Γ0(N))), which carries an
action of the Hecke algebra (this follows from the Eichler–Shimura isomorphism,
see Appendix A.3 for details). An element which is annihilated by T` − `− 1 for all
primes ` 6= N and by U + 1 corresponds exactly to a cusp form congruent to the
weight 2 Eisenstein series. By the assumption that (N, p) is admissible we know
that there exists a unique such Hecke eigenform f ∈ S2(Γ0(N)). We conclude that
ωχ is a linear combination of m±f .

Finally, we recall that H1
P (Γ0(N),Z/pZ) can be diagonalized by the involution

ι given by conjugation with
(−1 0

0 1
)
(here we need p > 2), which follows from

e.g. [28, Sec. 1]. We see directly that the eigenvalue of ωχ under the action of ι is
+1. Thus we conclude that m+

f = m · ωχ for some m ∈ (Z/pZ)×. This gives the
wanted result. �

This settles the conjecture of Mazur and Rubin in these very special cases,
whereas in general the conjecture seems out of reach without the extra average both
with the automorphic and the dynamical approach.

Remark 3.3. Strictly speaking Conjecture 1.1 of Mazur and Rubin is only formulated
for primes p and cusp forms corresponding to elliptic curves E where the residual
representation of E mod p is surjective and p is an ordinary and good prime of E.
This is not the case in the example considered above, but the above seems like the
natural generalization of the conjecture to this case.

Remark 3.4. The assumption that N is prime is essential for the results of [26]
to apply. For composite level (and for imaginary quadratic fields) the situation
becomes much more complicated as multiplicity one might fail (see e.g. [48]).

4. Geometry of Hn+1

We introduce the upper half-space (Poincaré) model Hn+1 for the (n + 1)-
dimensional hyperbolic space. We briefly describe some geometric and arithmetic
properties of the space Γ\Hn+1, where Γ is a cofinite discrete subgroup of isometries.
We make use of a specific model for the group of isometries given in terms of a
certain Clifford algebra. Our main references for this section are [1], [13] and [14].

4.1. Clifford algebra. We will now describe the upper-half space model Hn+1 for
hyperbolic (n+ 1)-space. Let q : Rn → R be a quadratic non-degenerate form and
C(q) the associated Clifford algebra, i.e. the free R-algebra on {e1, . . . , en} modulo
the relations

e2
i = q(ei), eiej = −ejei, i, j = 1, . . . , n, i 6= j,

where e1, . . . , en is a q-orthonormal basis for Rn. We denote by En the set of all
subsets of {1, . . . , n}. Then for M = {i1, . . . , ik} ∈ En with i1 < · · · < ik, we define

eM := ei1 · · · · · eik ∈ C(q),

as well as e∅ := 1 ∈ C(q). Then one can check that {eM |M ∈ En} is a R-basis for
C(q).

We have two linear involutions on C(q) given by

eM := (−1)|M |(|M |+1)/2eM , e∗M := (−1)|M |(|M |−1)/2eM , where M ∈ En.
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They satisfy
vw = w v, (vw)∗ = w∗v∗, for all v, w ∈ C(q).

From now on we assume that q = −In, the negative definite unit form, and
e1, . . . , en the standard basis. In this case we write Cn for C(q). We denote by
Vn ⊂ Cn the vector space spanned by {1, e1, . . . , en}. It is easy to see that V0 ∼= R
and V1 ∼= C as R-algebras. More generally, Vn is equipped with the inner product

〈v, w〉 = 1
2(vw + vw).

We note that this coincides with the standard Euclidean inner product if we identify
Vn with Rn+1 using the basis {1, e1, . . . , en}.

For x =
∑
M∈En λMeM ∈ Cn, we define the norm

(4.1) |x| :=
( ∑
M∈En

λ2
M

)1/2

.

We note that for x ∈ Vn, we have |x|2 = 〈x, x〉. Now, if Λ < Vn is a lattice, we
define the dual lattice as

Λ◦ := {w ∈ Vn | 〈v, w〉 ∈ Z for all v ∈ Λ}.

We now define the following model of hyperbolic (n+ 1)-space:

Hn+1 := {x0 + x1e1 + · · ·+ xnen | x0, x1, . . . , xn−1 ∈ R, xn > 0} .

We have the maps x : Hn+1 → Vn−1 and y : Hn+1 → (0,∞) given by

x(P ) := x0 + x1e1 + · · ·+ xn−1en−1, y(P ) := xn,

where P = x0 + x1e1 + · · ·+ xnen ∈ Hn+1. We can think of x(P ) as an element of
Rn via the above. Then from (4.1) we see that

|P |2 = |x(P )|2 + |y(P )|2.

We equip Hn+1 with the hyperbolic metric coming from the line element:

ds2 = dx2
0 + dx2

1 + · · ·+ dx2
n

x2
n

,(4.2)

which makes Hn+1 a Riemannian manifold with constant negative curvature −1.
The volume element is given by

dv = dx0dx1 . . . xn

xn+1
n

.

The hyperbolic Laplace–Beltrami operator is given by

(4.3) ∆ = x2
n

(
∂2

∂x2
0

+ ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
− (n− 1)xn

∂

∂xn

in this model.
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4.2. Vahlen group. We will use the above upper-half space model to describe the
group of (oriented) isometries Isom+(Hn+1) in a way that is convenient for our
purposes. We let Tn ⊂ Cn be the multiplicative subgroup generated by Vn \ {0}. As
in [1, p. 219] or [14, p. 648], we define the Vahlen group SVn to be

(4.4) SVn :=


(
a b
c d

)
∈M2(Cn)

(i) a, b, c, d ∈ Tn ∪ {0}
(ii) ab, cd ∈ Vn

(iii) ad∗ − bc∗ = 1

 .

We can easily check that SV0 = SL2(R) and SV1 = SL2(C) as R-algebras. Then it
is a non-trivial fact that SVn is a group under matrix multiplication with inverse

(4.5)
(
a b
c d

)−1
=
(
d∗ −b∗
−c∗ a∗

)
.

We can now define the action of SVn−1 on Hn+1, which resembles the actions of
SL2(R) and SL2(C) on H2 and H3, respectively, as can be seen from the following
result.

Theorem 4.1 ( [14], Theorem 1.3). Let γ =
(
a b
c d

)
∈ SVn−1 and P ∈ Hn+1. Then

cP + d ∈ Tn and we define
(4.6) γP := (aP + b)(cP + d)−1 ∈ Hn+1.

The map P 7→ γP is an orientation preserving isometry of Hn+1. Moreover, all
orientation preserving isometries are obtained in this way and we have the induced
isomorphism SVn−1/{I,−I} ∼= Isom+(Hn+1).

What is convenient about this description of Isom+(Hn+1) is that one gets very
familiar expressions for the coordinate-projections of the image under the action of
γ ∈ SVn−1 on P = (x, y) ∈ Hn+1.

Lemma 4.2 ( [14], page 648). Let γ =
(
a b
c d

)
∈ SVn−1 and P = x+ yen ∈ Hn+1.

Then

(4.7) x(γP ) = (ax+ b)(cx+ d) + acy2

|cx+ d|2 + |c|2y2 and y(γP ) = y

|cx+ d|2 + |c|2y2 .

Remark 4.3. Our model for the hyperbolic (n + 1)-space is consistent with other
descriptions from the literature. For example, one can consider the Klein model
Kn+1 on which isometries are described by SO(n + 1, 1). Then there exists an
bijection Φ : Hn+1 → Kn+1 and an isomorphism Ψ : SVn−1/{±I}

∼−→ SO0(n+ 1, 1)
which commutes with the respective actions, i.e. Φ(γ · P ) = Ψ(γ)Φ(P ), for all
γ ∈ SVn−1 and P ∈ Hn+1. Here SO0(n + 1, 1) is the component of the identity
element in SO(n + 1, 1). We refer to [13, Section 5] for detailed descriptions of
different models of the hyperbolic space.

4.3. Hyperbolic quotients. Let Γ < SVn−1 be a discrete subgroup of motions
such that the surface Γ\Hn+1 has finite hyperbolic volume. We say that a ∈
Rn ∪ {∞} is a cusp for Γ if it is fixed by a parabolic element in Γ. There exists a
scaling matrix σa ∈ SVn−1 such that σa∞ = a. We let Γa := {γ ∈ Γ | γa = a} be
the stabilizer of a in Γ. We define

Γ′a := Γa ∩ σa {( 1 b
0 1 ) ∈ SVn−1}σ−1

a .

We note that Γ′a consists of the parabolic elements in Γa together with the identity.
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There exists a lattice Λa ≤ Rn such that

σ−1
a Γ′aσa =

{(
1 λ
0 1

)
| λ ∈ Λa

}
.

We let Pa be a fundamental parallelogram for Λa with Euclidean area vol(Λa).
We define the dual lattice of Λ◦a as follows:

(4.8) Λ◦a := {µ ∈ Rn | 〈µ, λ〉 ∈ Z for all λ ∈ Λa} ,
where 〈·, ·〉 is the usual scalar product on Rn.

For a cusp a and Y > 0, we define the cuspidal sector
Fa(Y ) := σa{(x, y) | x ∈ Pa, y > Y } .

Then for Y large enough, there exists a fundamental domain F for Γ\Hn+1 and
inequivalent cusps a1, · · · , ah ∈ Rn ∪ {∞} such that we can write F as the disjoint
union
(4.9) F = F0 t Fa1(Y ) t · · · t Fah(Y ) ,
where F0 is a compact set, see [46, p. 8] or [37, p. 5].

For notational convenience, from now on we will focus only on the cusp at ∞.
We drop the subscript by denoting Λ := Λ∞, P := P∞ etc. Our theory can be
generalised to take all cusps into account.

We will now define our outcome space (1.6) in precise terms. First we note that
all the representatives of a given double coset in Γ′∞\Γ/Γ′∞ share the same lower
left entry. Thus it makes sense to define

TΓ :=
{(
∗ ∗
c ∗

)
∈ Γ′∞\Γ/Γ′∞ | |c| > 0

}
,

and
TΓ(X) :=

{(
∗ ∗
c ∗

)
∈ Γ′∞\Γ/Γ′∞ | 0 < |c| ≤ X

}
,

where |c| denotes the Clifford norm (4.1). This is the natural generalisation of the
outcome space considered by Petridis–Risager in [34, p. 1002]. In (5.16) below, we
provide an asymptotic formula for the size of TΓ(X). We put
(4.10) C(Γ) :=

{
c ∈ Tn | ∃a, b, d ∈ Tn :

(
a b
c d

)
∈ Γ
}
.

If γ =
(
a b
c d

)
∈ Γ then from the definition of the action (4.6), we see that

γ∞ = ac−1, where γ∞ is defined as the limit of γP as P tends to the cusp at ∞.
Also, from [14, Lemma 1.4], we know that ac−1 ∈ Vn−1.

We observe that γ∞ is well-defined on double cosets in Γ′∞\Γ/Γ′∞ up to transla-
tions by the lattice Λ. Therefore we see that the map

g : Γ′∞\Γ/Γ′∞ → Rn/Λ ∪ {∞}
γ 7→ γ∞

is well-defined using the identification of Vn−1 with Rn as above. A simple conse-
quence of Theorem 1.10 is that γ∞ become equidistributed on Rn/Λ as we vary
along γ ∈ TΓ(X) as X →∞.

Remark 4.4. Let Y = Γ∞ be the set of all cusps equivalent to ∞ and Y/Γ′∞ be the
set of orbits of Γ′∞ acting on Y . Then we can identify Γ′∞\Γ/Γ′∞ with Y/Γ′∞ , a
construction essentially the same as the map g defined above. If Γ is an congruence
subgroup, we obtain nice arithmetic descriptions for Y/Γ′∞ and for the image of g
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in terms of orders in the Clifford algebra, we refer to Section A.1. Moreover, one
can construct a height function on Y/Γ′∞ which agrees with the ordering given by
TΓ(X).

5. Twisted Eisenstein series for Hn+1

Let Γ < SVn−1, Γ′∞ and Λ be as in the previous section. Throughout this
section, we will use the the notations defined in Section 4. We now fix χ a unitary
character of Γ which is trivial on Γ′∞. From this, for P ∈ Hn+1, we define the
twisted Eisenstein series

(5.1) E(P, s, χ) =
∑

Γ′∞\Γ

χ(γ)y(γP )s.

It is absolutely convergent for Re(s) > n and satisfies

E(γP, s, χ) = χ(γ)E(P, s, χ),
∆E(P, s, χ) = s(n− s)E(P, s, χ).

We see that E(P, s, χ) is invariant under the action by the lattice Λ and hence
it has a Fourier expansion. It is well-known that the constant term in the Fourier
expansion has the form [Γ∞ : Γ′∞]ys + φ(s, χ)yn−s, where φ(s, χ) is called the
scattering matrix. Its basic properties are well-known, see [8, Ch. 6].

For µ, ν ∈ Λ◦ and c ∈ C(Γ), we define the generalised Kloosterman sum as
in [14, Section 4] using the Vahlen model:

S(µ, ν, c, χ) :=
∑(

a b
c d

)
∈Γ′∞\Γ/Γ′∞

χ

((
a b
c d

))
e
(〈
ac−1, µ

〉
+
〈
dc−1, ν

〉)
(5.2)

=
∑

γ∈Γ′∞\Γ/Γ
′
∞

cγ=c

χ(γ)e(〈γ∞, µ〉+
〈
(γ−1∞)∗, ν

〉
),(5.3)

where e(x) := e2πix and cγ is the lower-left entry of γ in the Vahlen model. We
now calculate the Fourier expansion of the Eisenstein series using the techniques
developed in [15, p. 111–113] and [14, p. 676–678]. This gives for P ∈ Hn+1 with
x = x(P ) and y = y(P ):

E(P, s, χ) = [Γ∞ : Γ′∞]ys + yn−s
πn/2Γ

(
s− n

2
)

vol(Λ)Γ(s) L(s, χ)

+ 2πsyn/2

vol(Λ)Γ(s)
∑

µ∈Λ◦\{0}

L(s, µ, χ)|µ|s−n/2Ks−n/2(2π|µ|y)e(〈x, µ〉),(5.4)

where Ks−n/2(y) is the K-Bessel function and

(5.5) L(s, χ) :=
∑
γ∈TΓ

χ(γ)
|cγ |2s

=
∑

c∈C(Γ)

S(0, 0, c, χ)
|c|2s

,

and for µ 6= 0,

(5.6) L(s, χ, µ) :=
∑
γ∈TΓ

χ(γ)
e(
〈
dγc
−1
γ , µ

〉
)

|cγ |2s
=

∑
c∈C(Γ)

S(0, µ, c, χ)
|c|2s

.
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For χ = 1 the trivial character, we just denote L(s, µ) := L(s, µ, 1). We note that
the explicit Fourier expansion we obtain in (5.4) is closely related to [14, Thm. 9.1].

At other cusps a 6=∞ of Γ, we will also need some information about the Fourier
expansion. For this let P a = (xa, ya) = σ−1

a P denote the coordinates at a. Then
the Fourier expansion at a is given by [8, Ch. 6, Prop. 1.42]:

E(P a, s, χ) = φa(s)(ya)n−s +
∑

µ∈Λ◦a\{0}

φa(s, µ)(ya)n−sKs−n/2(2πn|µ|ya)e(〈xa, µ〉),

where φa(s, µ) are the Fourier coefficients, which decay rapidly in |µ| (for s fixed). In
particular we observe that E(P, s, χ) is square integrable when restricted to Fa(Y )
for a 6=∞ (for Y sufficiently large as in (4.9)).

Remark 5.1. By inverting γ in the definition of L(s, χ, µ), we observe that

L(s, χ, µ) =
∑
γ∈TΓ

χ(γ)
e(
〈
(γ−1∞)∗, µ

〉
)

|cγ |2s
=
∑
γ∈TΓ

χ(γ)e(〈γ∞, µ〉)
|cγ |2s

.(5.7)

5.1. Short discussion on spectral properties. We say that a (measurable)
function f : Hn+1 → C is χ-automorphic if it satisfies

f(γP ) = χ(γ)f(P ) ,

for P ∈ Hn+1 and γ ∈ Γ.
Denote by L2(Γ\Hn+1, χ) the space of square integrable χ-automorphic functions

with respect to the hyperbolic metric. For f, g ∈ L2(Γ\Hn+1, χ), we note that fg
is Γ-invariant. Hence we can define the inner product

〈f, g〉 :=
∫
F
fg dv .

We let D(χ) ⊂ L2(Γ\Hn+1, χ) be the subspace consisting of all C2-functions such
that ∆f ∈ L2(Γ\Hn+1, χ). Then one can see that −∆ : D(χ) → L2(Γ\Hn+1, χ)
is a symmetric and nonnegative operator, its spectrum consists of discrete and
continuous parts with finitely many discrete points in the interval [0, n2/4). Let

0 ≤ λ0(χ) ≤ λ1(χ) ≤ · · · ≤ λk(χ) < n2/4

be the eigenvalues in the interval [0, n2/4) (see [37] and [8, Ch. 6]). The Eisen-
stein series E(P, s, χ) admits meromorphic continuation to s ∈ C and satisfies the
functional equation

E(P, n− s, χ) = φ(n− s, χ)E(P, s, χ) ,

where φ(s, χ) is the scattering matrix. Moreover, E(P, s, χ) has poles where φ(s, χ)
has poles and vice versa. There are finitely many poles in the region Re(s) > n/2,
all of them simple and on the real line. If n/2 < σ0 ≤ n is a pole of E(P, s, χ),
denote by uσ0 its residue at σ0. Then

uσ0 ∈ L2(Γ\Hn+1, χ) and ∆uσ0 + σ0(n− σ0)uσ0 = 0 .

For 0 ≤ j ≤ k, let sj(χ) ∈ (n/2, n] be such that sj(χ)(n− sj(χ)) = λj(χ). Then we
define

Ω(χ) := {s0(χ), . . . , sk(χ)}.
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The poles of E(P, s, χ) in Re s > n/2 form a subset of Ω(χ) (exactly the non-cuspidal
part of the discrete spectrum). Moreover, we can see from [8, Ch 6, p. 37] that for
χ trivial, we have

(5.8) Ress=nE(P, s) = [Γ∞ : Γ′∞]vol(Λ)
vol(Γ\Hn+1) .

5.2. Key lemmas. In this section we will prove certain key analytic lemmas that
we will need in the proofs of our theorems. First of all we will show that we can only
have λ0(χ) = 0 when χ is trivial. Secondly we obtain meromorphic continuation
of the Fourier coefficients of the twisted Eisenstein series, which will serve as the
generating series for our distribution problem. Finally, we will prove a bound on
vertical lines for these generating series.

The most conceptual way to see the first claim above is probably to use Green’s
identity ∫

F
(−∆u)udv =

∫
F
∇u.∇u dv +

∫
∂F

u(∇u.n)dS.

If we have ∆u = 0, then the first integral is 0. The third integral should vanish since
contributions from “opposing sides” in the boundary of the fundamental domain
should cancel each other. This would force the second integral to be 0, which means
u is constant. This argument works in principle, but for example in [15, Theorem
4.1.7] they spend several pages making it rigorous in the three dimensional case.
Instead we will give an argument using the Fourier expansion and the mean value
theorem for harmonic functions.

Lemma 5.2. We have that λ0(χ) = 0 if and only if χ is trivial.

Proof. Suppose λ0(χ) = 0 and let u be a corresponding eigenvector, i.e. u ∈
L2(Γ\Hn+1, χ) and ∆u = 0. Then we can consider the Fourier expansion of u at a
cusp a of Γ. We know from [8, Ch. 6, p.10] that the Fourier expansion of u takes
the form

c1,a + c2,a(ya)n +
∑

µ∈Λ◦a\{0}

au,a(µ)(ya)n/2Kn/2(2πn|µ|y)e(〈x, µ〉).

From the rapid decay of theK-Bessel function we see that if c2,a 6= 0, then u behaves
like (ya)n close enough to a and thus

∫
Fa(Y ) |u(x, y)|2dv is divergent contradicting

the fact that u is square integrable. Thus c2,a = 0 and we conclude again using
the rapid decay of the K-Bessel functions that u is bounded on Fa(Y ). Since a
was an arbitrary cusp we conclude that u is bounded on all of F . Thus since χ
is unitary, we conclude that u is bounded on all of Hn+1. Now it follows from
the mean value theorem for harmonic functions on Hn+1 that u is constant. By
definition, u(γP ) = χ(γ)u(P ), for all γ ∈ Γ and P ∈ Hn+1. Thus we conclude that
χ is the trivial character.

Therefore, if χ is trivial the unique eigenfunction of eigenvalue 0 is the constant
one, and for χ non-trivial there are no eigenfunctions of eigenvalue 0. This finishes
the proof. �

We now obtain meromorphic continuation of the Fourier coefficients of the Eisen-
stein series and crucial information about the location of the poles.

Proposition 5.3. The Dirichlet series L(s, µ, χ) admits meromorphic continuation
to the entire complex plane. The possible poles in the half-plane Re s > n/2 are
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contained in Ω(χ). Furthermore, there is a pole at s = n exactly if χ is trivial and
µ = 0. In this case the residue is equal to

[Γ∞ : Γ′∞]Γ(n)vol(Λ)2

πn/2Γ
(
n
2
)

vol(Γ\Hn+1)
.

Proof. From (5.4), we know that for µ ∈ Λ◦\{0}

L(s, µ, χ) = Γ(s)
2πsyn/2|µ|s−n/2Ks−n/2(2π|µ|y)

∫
P
E((x, y), s, χ)e(−〈x, µ〉)dx,

and
L(s, χ) = ys−nΓ(s)

πn/2Γ
(
s− n

2
) (∫

P
E((x, y), s, χ)dx− [Γ∞ : Γ′∞]ys

)
,

where P is a fundamental parallelogram for Λ. Now for y > 0 fixed , the Bessel
function Ks(y) defines an analytic function in s, which is non-zero for some y
large enough, see the asymptotic behaviour for Ks(y) in [19, (B.36)]. Similarly the
Gamma function defines a meromorphic function. Thus we get the meromorphic
continuation of L(s, µ, χ) from that of the Eisenstein series. We also note that in
the half-plane Re s > n/2, L(s, µ, χ) has possible poles only where E(P, s, χ) has
poles, i.e. the poles are contained in Ω(χ). By Lemma 5.2, we see that L(s, µ, χ) is
regular at s = n unless χ is trivial.

If χ is trivial, we see that L(s, µ) with µ 6= 0 is regular at s = n, since the pole
of the Eisenstein series is constant. For µ = 0 the residue is given by

Ress=n L(s, 0) = Γ(n)
πn/2Γ

(
n
2
) ∫
P

[Γ∞ : Γ′∞]vol(Λ)
vol(Γ\Hn+1) dx = [Γ∞ : Γ′∞]Γ(n)vol(Λ)2

πn/2Γ
(
n
2
)

vol(Γ\Hn+1)
,

as wanted. �

In order to obtain bounds on vertical lines for our generating series, we will use
ideas due to Colin de Verdière [9], which employs the analytic properties of resolvent
operators. Alternatively, one could use Poincaré series for µ 6= 0 and Maaß–Selberg
for µ = 0 as is done in [34] and [10]. In the end the two methods are essentially
equivalent.

Let h : R+ → R+ be a smooth function which is equal to [Γ∞ : Γ′∞] for y > Y +1
and 0 for y < Y , where Y is as in (4.9). Then for Re(s) > n/2 we define a χ-
automorphic function on Hn+1 by P 7→ h(y)ys for P ∈ F and extended periodically
(twisted accordingly by χ). For P ∈ F , we define the truncated Eisenstein series

g(P, s, χ) := E(P, s, χ)− h(y)ys

and then we consider the unique χ-automorphic extension to P ∈ Hn+1. Then from
the above mentioned results on the Fourier expansions of the Eisenstein series at
the different cusps, we see that

g(P, s, χ) ∈ L2(Γ\Hn+1, χ).
Moreover, for P ∈ F ,
(∆−s(n−s))g(P, s, χ) = −(∆−s(n−s))h(y)ys = h′′(y)ys+2+(2s−n+1)h′(y)ys+1.

We observe that the right hand side above is compactly supported with L2-norm
bounded by O(|s|+ 1) for n/2 + ε < Re s < n+ 2. Now we put

H(P, s, χ) := R(s, χ)(h′′(y)ys+2 + (2s− n+ 1)h′(y)ys+1) ∈ L2(Γ\Hn+1, χ),
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where R(s, χ) = (∆− s(n− s))−1 denotes the resolvent operator associated to ∆.
By a general bound for the operator norm of resolvent operators [19, Lemma A.4],
we conclude that

||H(·, s, χ)||L2 �ε 1,
when s is bounded at least ε away from Ω(χ). We can now write

(5.9) E(P, s, χ) = H(P, s, χ) + h(y)ys, P ∈ F

where we have good control on the L2-norm of H(P, s, χ). We will use this to obtain
bounds on vertical lines for the Fourier coefficients of E(P, s, χ), mimicking [32,
Section 4.4].

Proposition 5.4. Let µ ∈ Λ◦. Then we have

L(s, µ, χ)�ε,µ (|s|+ 1)n/2,

for n/2 + ε < Re s < n+ 2 and s bounded at least ε away from Ω(χ).

Proof. We have

L(s, µ, χ) =
∫
P
fs(y, µ)E((x, y), s, χ)e(−〈x, µ〉)dx− 1µ=0[Γ∞ : Γ′∞]ysfs(y, µ),

(5.10)

where 1µ=0 is 1 if µ = 0 and 0 otherwise and

fs(y, µ) =
{

Γ(s)
(
2πsyn/2|µ|s−n/2Ks−n/2(2πn|µ|y)

)−1
, µ 6= 0,

Γ(s)
(
yn−sπn/2Γ(s− n/2)

)−1
, µ = 0.

The idea is now to bound the right hand side of (5.10) using (5.9). In order to
bring the information we have about H(P, s, χ) into play, we need to make an extra
integration over y. So let Y be a fixed quantity such that {(x, y) | x ∈ P, y > Y } ⊂
F , then we see that∫ Y+1

Y

∫
P
fs(y, µ)E((x, y), s, χ)e(−〈µ, x〉)dxdy

=
∫ Y+1

Y

∫
P
fs(y, µ)H((x, y), s, χ)e(−〈µ, x〉)dxdy

+
∫ Y+1

Y

∫
P
fs(y, µ)h(y)yse(−〈µ, x〉)dxdy

Now we observe that by Cauchy–Schwarz we have∫ Y+1

Y

∫
P
fs(y, µ)H((x, y), s, χ)e(−〈µ, x〉)dxdy

≤

(∫ Y+1

Y

∫
P
|H((x, y), s, χ)|2dxdy

)1/2(∫ Y+1

Y

∫
P
|fs(y, µ)|2dxdy

)1/2

� ||H(·, s, χ)||L2

(∫ Y+1

Y

|fs(y, µ)|2dy
)1/2

,

where we use that {(x, y) | x ∈ P, y > Y } ⊂ F . To finish the proof we need an
upper bound for fs(y, µ).



RESIDUAL DISTRIBUTION OF MODULAR SYMBOLS 19

For µ = 0 we get by Stirling’s approximation the upper bound
fs(y, 0)�ε y

n−σ(|s|+ 1)n/2,
for s = σ + it with n/2 + ε < σ < n+ 2.

For µ 6= 0, we use the Fourier expansion for the K-Bessel function (coming
from combining [19, (B.32)] and [19, (B.34)]) to obtain a good approximation. By
applying Stirling’s approximation, this gives for s = σ + it with t� 1

Ks−n/2(2π|µ|y) =
π1/2tσ−n/2−1/2eπt/2

(
t
e

)it
2
√

2 sin(π(s− n/2))
(π|µ|y)−s+n/2 (1 +Oµ,y(t−1))

�µ,y e
−πt/2tσ−n/2−1/2,

where the implied constants depend continuously on y. From this we conclude that
when y ∈ (Y, Y + 1), we have

fs(y, µ)�µ (1 + |s|)n/2.
Inserting this and using the bound ||H(·, s, χ)||L2 �ε 1, we conclude that

L(s, µ, χ)�ε,µ (|s|+ 1)n/2,
for s bounded ε away from Ω(χ), as wanted. �

Using this we deduce the following asymptotic expression using a standard com-
plex analysis argument. See [10, p. 20–21] or [32, Appendix A] for fully detailed
proofs in similar settings.

Proposition 5.5. Let χ be a unitary character of Γ trivial on Γ′∞ and µ ∈ Λ◦.
Then there exists a constant ν(χ) > 0 such that∑

γ∈TΓ(X)

χ(γ)e (〈γ∞, µ〉) = X2s0(χ)

s0(χ)

(
Ress=s0(χ) L(s, χ, µ) +Oχ,µ(X−ν(χ))

)
.

Proof. Let φU : R→ R be a family of smooth non-increasing functions with

(5.11) φU (t) =
{

1 if t ≤ 1− 1/U,
0 if t ≥ 1 + 1/U

and φ(j)
U (t) = O(U j) as U →∞. For Re(s) > 0, we consider the Mellin transform

(5.12) RU (s) =
∫ ∞

0
φU (t)ts dt

t
.

We can easily see that

(5.13) RU (s) = 1
s

+O

(
1
U

)
as U →∞

and for any N > 0,

(5.14) RU (s) = O

(
1
|s|

(
U

1 + |s|

)N)
as |s| → ∞ ,

where the last estimate follows from repeated partial integration. Now we use Mellin
inversion and (5.7) to obtain∑

γ∈TΓ

χ(γ)e (〈γ∞, µ〉) φU

(
|c|2

X

)
= 1

2πi

∫
Re(s)=n+1

L(s, χ, µ)XsRU (s)ds.
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We move the line of integration to Re(s) = h(χ) for some h(χ) > n/2 such that
h(χ) < s0(χ) and there are no poles of L(s, χ, µ) on the interval [h(χ), s0(χ)).
We use the fact that we have polynomial growth on vertical lines for L(s, χ, µ)
guaranteed by Proposition 5.4 and that L(s, χ, µ) has only a possible pole at s0(χ)
in the region Re(s) > h(χ). We conclude that

1
2πi

∫
Re(s)=n+1

L(s, χ, µ)XsRU (s)ds = 1
2πi

∫
Re(s)=h

L(s, χ, µ)XsRU (s)ds

+ Ress=s0(χ) (L(s, χ, µ)XsRU (s)) .

Setting N = (n+ 1)/2 in (5.14), we observe from Proposition 5.4

(5.15)
∫

Re(s)=h
L(s, χ, µ)XsRU (s)ds� XhU (n+1)/2 .

Also, (5.13) gives us

Ress=s0(χ) (L(s, χ, µ)XsRU (s)) = Xs0(χ)

s0(χ) Ress=s0(χ) L(s, χ, µ)
(

1 +O

(
1
U

))
.

Set U = Xa(χ), where a(χ) := (s0(χ)− h(χ))/(n+ 1). We obtain∑
γ∈TΓ

χ(γ)e (〈γ∞, µ〉)φU
(
|c|2

X

)
= Xs0(χ)

s0(χ)

(
Ress=s0(χ) L(s, χ, µ) +O(X−a(χ))

)
.

Now if χ is the trivial character and µ = 0, we obtain∑
γ∈TΓ

φU

(
|c|2

X

)
= Xn

n

(
Ress=n L(s) +O(X−δ)

)
,

for some fixed δ > 0. We now choose φ1
U and φ2

U as in (5.11) with the further
requirements that φ1

U (t) = 0 for t ≥ 1 and φ2
U (t) = 1 for 0 ≤ t ≤ 1. Then∑

γ∈TΓ

φ1
U

(
|c|2

X

)
≤

∑
γ∈TΓ(X)

1 ≤
∑
γ∈TΓ

φ2
U

(
|c|2

X

)
,

so the previous two equations and Proposition 5.3 give us

(5.16) #TΓ(X) = X2n

n

(
[Γ∞ : Γ′∞]vol(Λ)2Γ(n)
πn/2vol(Γ)Γ(n/2)

+O(X−δ)
)
.

Finally, we see that∑
γ∈TΓ

χ(γ)e (〈γ∞, µ〉)φU
(
|c|2

X

)
=

∑
γ∈TΓ(

√
X)

χ(γ)e (〈γ∞, µ〉)

+O

(
#
{
γ ∈ Γ′∞\Γ/Γ′∞ : 1− 1

U
≤ |c|

2

X
≤ 1 + 1

U

})
.

But now we use (5.16) to bound the size of the error term

#
{
γ ∈ Γ′∞\Γ/Γ′∞ : 1− 1

U
≤ |c|

2

X
≤ 1 + 1

U

}
= TΓ

(√
X

(
1 + 1

U

))
− TΓ

(√
X

(
1− 1

U

))
= O

(
Xn−min(δ,a(χ))

)
.

The conclusion follows. �
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Remark 5.6. As a consequence of Proposition 5.5 and Proposition 5.3, we conclude
that for all unitary characters χ as above, there exist ν(χ) > 0 such that∑
γ∈TΓ(X)

χ(γ)e (〈γ∞, µ〉) = 1χ,µ
vol(Λ)2Γ(n)

nπn/2vol(Γ\Hn+1)Γ(n/2)
X2n +Oχ(X2n−ν(χ)),

where 1χ,µ is 1 if µ = 0 and χ is trivial and 0 otherwise.

6. Proof of main results

In this section we will use the analytic properties of twisted Eisenstein series
proved in the previous section to prove our main results.

We recall the setup from the introduction. Consider the cohomology group
H1

Γ′∞(Γ,R/Z) (see Appendix A for details), which can be identified with the set of
unitary characters of Γ trivial on Γ′∞.

Definition 6.1. We say that ω1, . . . , ωd ∈ H1
Γ′∞(Γ,R/Z) are in general position

if for any (l1, . . . , ld) ∈ Zd, we have

l1ω1 + . . .+ ldωd = 0 ∈ H1
Γ′∞(Γ,R/Z)⇔

(
liωi = 0 ∈ H1

Γ′∞(Γ,R/Z),∀i = 1, . . . , d
)
.

As an example one can pick ω1, . . . , ωd to be a Fp-basis for H1
Γ′∞(Γ,Z/pZ), where

we consider Z/pZ ⊂ R/Z via Z/pZ 3 a 7→ a/p.
The image of any ω ∈ H1(Γ,R/Z) is an additive subgroup of R/Z and thus is

either dense in R/Z or finite. In the first case we put Jω = R/Z and in the latter
case we put Jω = Z/mZ where m is the cardinality of the image of ω. That is, Jω
is the closure of the image of ω. We equip R/Z and Z/mZ with respectively the
Lebesgue measure and the uniform probability measure.

Proof of Theorem 1.10. Let ω1, . . . , ωd ∈ H1
Γ′∞(Γ0(N),R/Z) be in general position.

Then for any tuple l = (l1, . . . , ld) ∈ Zd such that liωi 6= 0 ∈ H1
Γ′∞(Γ0(N),R/Z) for

all i = 1, . . . , d, we get a non-trivial element of H1
Γ′∞(Γ,R/Z) defined by

ωl := l1ω1 + . . .+ ldωd.

Now we consider the associated non-trivial unitary character χl : Γ→ C× given by

χl(γ) := e
(
ωl(γ)

)
.

Observe that this is indeed well-defined and that we get an induced map χl :
Γ′∞\Γ/Γ′∞ → C× since ωl is trivial on Γ′∞.

By Weyl’s Criterion [20, p. 487] in order to conclude equidistribution of the
values of

ω(γ) := (ω1(γ), . . . , ωd(γ), γ∞)
inside

∏d
i=1 Jωi × (Rn/Λ), we have to show cancellation in the corresponding Weyl

sums: ∑
γ∈TΓ(X)

χl(γ)e(〈γ∞, µ〉),

where l ∈ Zd and µ ∈ Λ◦. From (5.16), we see that when χ trivial and µ = 0, then∑
γ∈TΓ(X)

1 = #TΓ(X) = X2n [Γ∞ : Γ′∞]vol(Λ)2Γ(n)
πn/2nvol(Γ)Γ(n/2)

+O(X2n−δ),
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for some δ > 0. Combining Proposition 5.5 and Remark 5.1, we have that for all
χl nontrivial, there exists a constant ν(χl) > 0 such that∑

γ∈TΓ(X)

χl(γ)e(〈γ∞, µ〉) = Oµ

(
X2n−ν(χl)

)
,

and from Proposition 5.3 it follows that there exists δ > 0 such that∑
γ∈TΓ(X)

e(〈γ∞, µ〉) = O
(
X2n−δ) .

This finishes the proof of Theorem 1.10 using Weyl’s Criterion. �

6.1. Proof of Theorem 1.9. We will now use our general distribution result to
deduce equidistribution of projections of group elements to finite quotients of the
abelianization of the group (modulo a parabolic subgroup).

Proof of Theorem 1.9 . We are interested in the distribution of the natural projec-
tion map (recalling the notation from Section 1.2)

ρm : Γ′∞\Γ/Γ′∞ → Γab,∞ ⊗ (Z/mZ).
By Weyl’s criterion in order to show equidistrition with respect to counting measure,
it is enough to show ∑

γ∈TΓ(X)

χ(ρm(γ)) = o(#TΓ(X)), X →∞,

for all non-trivial characters χ of Γab,∞ ⊗ (Z/mZ). It is clear that the characters
of Γab,∞ ⊗ (Z/mZ) are exactly computed by H1

Γ′∞(Γ,Z/mZ) and thus it follows
directly by Theorem 1.10. �

6.2. Distribution of modular symbol mod p. Now let us see how Theorem 1.2
follows from Theorem 1.10.

Proof of Theorem 1.2. We restrict to n = 1 and Γ = Γ0(N). Let f1, . . . , fd be
a basis for the space of rational Hecke newforms. Then we know that m±fi are
all linearly independent as elements of H1

Γ′∞(Γ0(N),Z) and thus the images in
H1

Γ′∞(Γ0(N),Z/pZ) are linearly independent as well. Thus it follows that the
m±fi , i = 1, . . . , d are in general position and thus we conclude Theorem 1.2 after
noting that TΓ0(N)(Q) = ΩQ,N . �

A different application is to consider the distribution of un-normalized modu-
lar symbols mod 1. So let f1, . . . , fd ∈ S2(Γ0(N)) be (different) rational Hecke-
normalized newforms and consider the map Q→ (R/Z)2d+1 given by

Q 3 r 7→ mN,R/Z(r) = (Re〈r, f1〉, Im〈r, f1〉, . . . , Im〈r, fd〉, r),(6.1)

as a random variable defined on ΩQ,N defined as in (1.3).

Corollary 6.2. The random variables mN,R/Z defined on the outcome spaces ΩQ,N
converge in distribution to the uniform distribution on (R/Z)2d+1 as Q→∞. More
preciely, for any fixed product of intervals

∏2d+1
n=1 In ⊂ (R/Z)2d+1, we have

#
{
a/q ∈ ΩQ,N ∩ I2d+1 | (Re〈a/q, f1〉, . . . , Im〈a/q, fd〉) ∈

∏2d
n=1 In

}
#ΩQ,N

=
2d+1∏
n=1
|In|+o(1)
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as Q→∞.
Proof. From a classical result of Schneider [38] we know that the periods of rational
Hecke newform (or elliptic integrals) Ωf,± appearing in (1.2) are transcendental.
By the rationality of (1.2), this implies that the cohomology class associated to a
Hecke-normalised rational newform f given by

Γ0(N) 3 γ 7→
∫ ∞
γ∞

Re(f(z)dz)

takes some irrational value (and similarly for Im(f(z)dz)). Thus by the Eichler–
Shimura isomorphism, we conclude that given an orthonormal set f1, . . . , fd of
rational Hecke-normalized newforms, the associated cohomology classes Re fi(z)dz
and Im fi(z)dz are in general position and the images of the associated characters
are dense in R/Z.

Now Corollary 6.2 follows directly from Theorem 1.10. �

6.3. Applications to Dedekind sums. We will now apply our results to the
residual distribution of Dedekind sums defined as follows for positive integers a, q:

s(a, q) =
q∑

k=1
((k/q))((ak/q)),

where

((x)) =
{
x− bxc − 1/2, x /∈ Z
0, x ∈ Z

is the “sawtooth” function. We allow for both an “algebraic” and “archimedian”
restriction on (a, q). Our result supplements the vast literature on the archimedean
distributional properties of Dedekind sums, see [17], [5] for surveys of results.
Corollary 6.3. Let N, p ≥ 5 be primes such that p|N − 1 and H ≤ (Z/NZ)×
the unique subgroup of index p. Fix some class a0 ∈ (Z/NZ)× and some interval
I ⊂ R/Z. Then the values of

s(a,Nq)− s(a, q)− (N − 1)(a+ a)
12q

(where aa ≡ 1 mod Nq) on the outcome space{
(a, q) | 0 < q ≤ Q, a ∈ (Z/NqZ)×, a ∈ a0H, a/q ∈ I

}
are all p-integral and equidistribute mod p as Q→∞.
Proof. The results of [27, Section II.5] shows (after some simple manipulations) that
for N, p as in Corollary 6.3,

Γ0(N) 3
(
a b
Nq d

)
7→ s(a,Nq)− s(a, q)− (N − 1)(a+ d)

12q
defines a non-trivial element ωN,p ∈ H1

Γ∞(Γ0(N),Z/pZ) with eigenvalue −1 under
the involution given by conjugation by ( 0 1

N 0 ). Now let ωχ ∈ H1
Γ∞(Γ0(N),Z/pZ) be

the cohomology class associated to a Dirichlet character χ mod N of order p as in
the proof of Theorem 3.1, which we recall has eigenvalue +1 under the conjugation
action by ( 0 1

N 0 ). We observe that ωχ(γ) = a′0 ∈ Z/pZ corresponds exactly to γ
having upper left entry in some fixed coset a0H of the unique index p subgroup H
of (Z/NZ)×. Now Corollary 6.3 follows directly by applying Theorem 1.2 to ωN,p
and ωχ. �
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6.4. On the variance of the residual distribution. A natural question to ask
next is how well the values equidistribute in Theorem 1.10. For simplicity, we will
restrict to H2. So let Γ = Γ0(N) and let f ∈ S2(Γ0(N)) be Hecke newform and fix
the normalized modular symbols m±f (defined as in the introduction).

We consider for each X > 0 the random variables Yp,X defined on the outcome
space Z/pZ (with uniform probability measure) by

Z/pZ 3 a 7→
#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}

#TΓ(X) .

Clearly, we have E(Yp,X) = 1
p and Theorem 1.2 says that as X →∞, the random

variable Yp,X converge in distribution to the Dirac measure at 1
p . We will now cal-

culate the variance, which is a natural measure for the regularity of our distribution
problem:

Var(Yp,X) = E((Yp,X − EYp,X)2) = 1
p

∑
a∈Z/pZ

(
Yp,X(a)− 1

p

)2
.

First of all we observe that for the modular symbols and primes appearing in
Theorem 3.1, we have Var(Yp,X) = 0 for all X. On the other hand we can prove
using the perturbation theory of the hyperbolic Laplacian, that as p grows, the
picture is very different.
Theorem 6.4. We have for p large enough

Var(Yp,X) = cpX
4sp−4 +Op(X4sp−4−δp),(6.2)

for some sp, cp, δp > 0, as X → ∞. As p → ∞, we have cp = 2/p2 + O(p−3) and
sp = 1− cfp−2 +O(p−3), where cf is given by (6.7).

Furthermore, we can calculate the deviation from the mean for each individual
residue class. For p large enough and a ∈ Z/pZ, we have:

#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}
#TΓ(X) − 1

p
∼ da,pX2sp−2,(6.3)

as X →∞, where da,p = 2 cos( 2πa
p )

p +O(p−2) as p→∞.
Proof. For ε > 0 we define the character χε : Γ0(N)→ C defined by

γ 7→ e2πim±
f

(γ)ε.

Let λ0(ε) = s0(ε)(1−s0(ε)) with s0(ε) > 1/2 be the smallest non-cuspidal eigenvalue
of the hyperbolic Laplacian acting on χε-automorphic functions (i.e. s0(ε) is the
rightmost pole of the twisted Eisenstein series E(z, s, χε)). Here we put s0(ε) = 1/2
if there are no residual eigenvalues. From this we define

sp := max
a∈(Z/pZ)×

s0(a/p),

which will turn out to control the variance. Note that sp < 1 for all p by Lemma
5.2.

By simple Fourier analysis on Z/pZ we have

#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}
#TΓ(X) = 1

p

∑
b∈Z/pZ

1
#TΓ(X)

∑
γ∈TΓ(X)

χb/p(γ)e−2πiab/p.

(6.4)
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By Parseval this implies∑
a∈Z/pZ

∣∣∣∣∣#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}
#TΓ(X)

∣∣∣∣∣
2

= 1
p

∑
a∈Z/pZ

∣∣∣∣∣
∑
γ∈TΓ(X) χa/p(γ)

#TΓ(X)

∣∣∣∣∣
2

.

Hence we have

Var(Yp,X) = 1
p

∑
a∈Z/pZ

∣∣∣∣∣#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}
#TΓ(X)

∣∣∣∣∣
2

− 1
p2

= 1
p2

∑
a∈(Z/pZ)×

∣∣∣∣∣∣ 1
#TΓ(X)

∑
γ∈TΓ(X)

χa/p(γ)

∣∣∣∣∣∣
2

,

(6.5)

since the contribution in the last sum for a ≡ 0 mod p is exactly 1/p2. Now by a
contour integration argument as in Proposition 5.5, we conclude that if s0(a/p) =
1/2 (i.e. there are no non-cuspidal eigevalues in [0, 1/4) for the Laplacian acting on
χa/p-automorphic functions) then∑

γ∈TΓ(X)

χa/p(γ) = Oε(X1+ε).

On the other hand if s0(a/p) > 1/2, then we conclude that∑
γ∈TΓ(X)

χa/p(γ) = ca,pX
2s0(a/p)(1 +O(X−δa,p)),

for some δa,p > 0 depending on the spectral gap between λ0(a/p) and λ1(a/p) and
some ca,p 6= 0 depending on the constant term of the non-cuspidal eigenfunction
corresponding to λ0(a/p). Combining this with (6.5), we deduce the formula (6.2).

We now want to understand the behavior for large p. For this we employ pertur-
bation theory of the twisted Laplacian, as developed in [35, Section 4] and [16]. We
have that the smallest eigenvalue λ0(ε) = s0(ε)(1− s0(ε)) of the twisted Laplacian
by the character χε is real analytic in ε, for ε small enough. Moreover, we know
that

(6.6) s0(ε) = 1− cf ε2 +O(ε3),

as ε→ 0, where

(6.7) cf = 8π2‖f‖2

vol(Γ)Ω2
f,±

,

see [10, Section 4] or [34] for more details.
Now fix ε > 0 small enough such that (6.6) holds. We want to show that if

θ ∈ [ε, 1 − ε], then λ0(θ) is bounded away from 0 (and hence s0(θ) is bounded
away from 1). This follows almost directly from [16, Proposition 2.1]. Suppose the
contradiction, i.e. there exists a sequence {θj} ⊂ [ε, 1 − ε] such that λ0(θj) → 0.
By a compactness argument, by passing to a subsequence, we can assume that
there exists θ∗ ∈ [ε, 1 − ε] such that θj → θ∗. Denote by fj ∈ L2(Γ\H, χθj ) the
corresponding eigenfunctions with eigenvalues λ0(θj). By the continuity statement
in [16, Proposition 2.1], we conclude that there exists f∗ ∈ L2(Γ\H, χθ∗) such that
a subsequence of (fj) is L2-convergent to f∗ and ∆f∗ = 0. But this means that f∗
is constant, and hence θ∗=0, which is a contradiction.
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By conjugation, we have s0(ε) = s0(−ε). Using the above and (6.6), we conclude
that for p large enough, we have that sp = s0(1/p) = s0(−1/p) = s0((p − 1)/p),
which combined with (6.6) gives the wanted.

Now, from (6.5), we note that the main term in the variance is given by the
contributions of a = 1 and a = p − 1 in the sum. By (5.16) we have #TΓ(X) =
(πvol(Γ))−1X2(1 + O(X−ν)), for some ν > 0. Furthermore, we know that the
eigenfunction (and in particular its constant Fourier coefficient) corresponding to
s0(ε) varies analytically with ε (for ε small enough) and we can deduce that

Ress=s0(ε) L(s, χε) = 1
πvol(Γ) +O(ε2),

see [10] for more details. Hence, from (6.5) and Proposition 5.5, we deduce that

cp = 2
p2 +O(p−3).

Finally for p large enough, we see that the main term in (6.4) comes from b = 0,
and the second main term is given by

1
p

(c1,pe−2πi/p + cp−1,pe
2πi/p)X2s0(1/p)−2,

which by the above gives (6.3). �

We note that the inequality (1.4) does indeed follow from (6.3).

Remark 6.5. We note that it should be straightforward to generalise Theorem 6.4
to Hn, as the perturbation theory of the first eigenvalue of the Laplacian has been
developed by Epstein [16] for Hn.

Appendix A. On the size of certain cohomology groups

In this paper we study the distribution of certain cohomology classes which can
be identified with the unitary characters of cofinite subgroups Γ < SO(n + 1, 1)
(or equivalently Γ < SVn−1) with cusps. It is now a natural question to ask how
many unitary characters our results actually apply to. This amounts to finding the
dimensions of the relevant spaces of unitary characters or equivalently of certain
cohomology groups. This last perspective is most useful when comparing it to the
existing literature. We will mostly restrict to arithmetic subgroup, which we will
define shortly. Then we will define the cohomology groups that are relevant and
finally survey what is known about their size.

A.1. Congruence subgroups. We will now define what we mean by a congruence
subgroup, which most of the results mentioned below applies to. In this case one
can obtain quite explicit descriptions of the double coset Γ′∞\Γ/Γ′∞ occuring in
Theorem 1.10.

Let J ⊂ Cn be an order stable under the involutions − and ∗. We put SVn(J) :=
SVn ∩M2(J). We also define V (J) := J ∩ Vn and T (J) = J ∩ Tn. For N ∈ N, we
define the principal congruence subgroup

(A.1) SVn(J ;N) :=
{(

a b
c d

)
∈ SVn(J) | a− 1, b, c, d− 1 ∈ NJ

}
.

A subgroup Γ < SVn(J) is called a congruence subgroup if SVn(J ;N) < Γ, for some
N ∈ N. We quote [14, Section 4] to provide an explicit description for representatives
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of Γ′∞\Γ/Γ′∞ in the case Γ = SVn(J ;N). In this case, C(Γ) = N · T (J) and a set
of representatives for ( a bc d

)
∈ Γ′∞\Γ/Γ′∞ with c 6= 0 is given by{(

a b
c d

)
∈ SVn(J) | c ∈ N · T (J), (a, d) ∈ D(c)

}
where

D(c) :=
{

(a, d) a ∈ J/(N · V (J) · c), d ∈ J/(N · c · V (J)),
a− 1, d− 1 ∈ N · J, ac, cd ∈ N · V (J)

}
.

In the more familiar cases n = 1 and n = 2, the above reduces to the following.
• n = 1. Then SV0 = SL2(R), J = Z and SV1(J ;N) = Γ1(N). Represen-
tatives in Γ1(N)′∞\Γ1(N)/Γ1(N)′∞ with c 6= 0 are uniquely determined
by

{(a, c) | c > 0, N | c, a ∈ (Z/cNZ)∗, a ≡ 1 mod N} .
If we consider Γ = Γ0(N), then representatives are uniquely determined by

{(a, c) | c > 0, N | c, a ∈ (Z/cZ)∗} .
• n = 2. Then SV1 = SL2(C). We take J = OK , where OK is the ring of
integers of a quadratic imaginary field K. Let n < OK be an ideal. We
consider congruence subgroups of the form

Γ1(n) :=
{(

a b
c d

)
∈ SL2(OK) | a− 1, b, c, d− 1 ∈ n

}
,

Γ0(n) :=
{(

a b
c d

)
∈ SL2(OK) | c ∈ n

}
.

In the case Γ1(n), representatives are uniquely provided by
{(a, c) | c ∈ n \ {0}, a ∈ (OK/(c · n))∗, a− 1 ∈ n} ,

while for Γ0(n) we have
{(a, c) | c ∈ n \ {0}, a ∈ (OK/(c))∗} .

Remark A.1. There is also a notion of congruence groups for SO(n + 1, 1). To
define them, let Γ be the integral automorphisms of an isotropic quadratic form
of signature (n + 1, 1) defined over Q. Then a congruence subgroup of Γ is any
subgroup containing {γ ∈ Γ | γ ≡ In+2 mod N} for some positive integer N ,
see [37, p. 7]. If Γ < SO0(n + 1, 1) is a congruence subgroup, then Ψ−1(Γ) is a
congruence subgroup in SVn−1. However, the converse is not true, there exists a
congruence subgroup Γ < SVn−1 such that Ψ(Γ) is not a congruence subgroup in
SO0(n+ 1, 1), see [14, Section 3] for more details.
A.2. The first cohomology group. We refer to [44, Chapter 8] for a comprehen-
sive account. The first cohomology group of Γ with coefficients in a Z[Γ]-module A
is defined as the quotient between the corresponding coboundaries and cocycles;

H1(Γ, A) := Z1(Γ, A)/B1(Γ, A),
where

Z1(Γ, A) := {ω : Γ→ A | ω(γ1γ2) = ω(γ1) + γ1.ω(γ2),∀γ1, γ2 ∈ Γ}
and

B1(Γ, A) := {ω : Γ→ A | ∃a ∈ A : ω(γ) = γ.a− a,∀γ ∈ Γ}.
Furthermore given a subset P ⊂ Γ, we will be studying the first P -cohomology
group of Γ with coefficients in A defined by;

H1
P (Γ, A) := {ω ∈ H1(Γ, A) | ω(p) ∈ (p− 1)A,∀p ∈ P}.
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We will in particular study the distribution of P -cohomology group in the case
where P = Γ′∞ is the set of parabolic elements of Γ fixing ∞ and A is given by the
circle R/Z equipped with the trivial Γ-action. In this case H1

P (Γ,R/Z) computes
exactly the unitary characters of Γ trivial on Γ′∞.

Now we will make some general comments on the structure and size ofH1
P (Γ,R/Z).

A.3. On the structure of the cohomology groups. We recall that for A a
trivial Γ module we have

H1(Γ, A) ∼= HomZ(Γ/[Γ,Γ], A),

which is a special case of the Universal Coefficients Theorem since H1(Γ,Z) ∼=
Γ/[Γ,Γ]. From this we see that H1(Γ,R/Z) can be identified with the unitary
characters of Γ. It is known [40, p. 484] that Γ is finitely presented and thus
Γ/[Γ,Γ] is a finitely generated abelian group. From this we see that we have a
splitting of the cohomology group H1(Γ,R/Z) in a free part and a torsion part;

H1(Γ,R/Z) ∼= H1
free(Γ,R/Z)⊕H1

tor(Γ,R/Z),

where the R/Z rank of H1
free(Γ,R/Z) is the same as the dimension of H1(Γ,R) and

the size of H1
tor(Γ,R/Z) is equal to the size of the torsion in H1(Γ,Z) ∼= Γ/[Γ,Γ].

We have a further Eichler–Shimura splitting of the free part due to Harder [18];

(A.2) H1(Γ,R) ∼= H1
cusp(Γ,R)⊕H1

Eis(Γ,R),

where H1
cusp(Γ,R) is the cuspidal part corresponding to certain automorphic forms

for Γ (as we will see shortly) and H1
Eis(Γ,R) is the (remaining) Eisenstein part,

which can be canonically defined. The cuspidal part H1
cusp(Γ,R) can be identified

with H1
P (Γ,R) where P is the set of all parabolic elements of Γ and furthermore all

of the above splittings are compatible with the Hecke action, when Γ is arithmetic.
There has been a lot of work recently on the study of the size of respectively

H1
cusp(Γ,R), H1

Eis(Γ,R) and H1
tor(Γ,R/Z), and we will now collect the relevant

results for our problem. We observe that the image of Γ′∞ in Γ/[Γ,Γ] is either
trivial, finite or isomorphic to Z. Thus we conclude that H1

Γ′∞(Γ,R/Z) is non-trivial
as soon as, say H1(Γ,R/Z) is not generated by a single element or H1

cusp(Γ,R) is
non-trivial.

A.4. The dimension of cohomology groups. It is a result of Kazhdan [21]
that for discrete, cofinite subgroups of real Lie groups of rank larger than 1, the
abelianization is always torsion. In our case, since SO(n+1, 1) is of rank one, we can
however hope to see some free part. In the case of cofinite subgroups Γ ⊂ SO(n+1, 1),
the dimension of H1(Γ,R) (or equivalently the free part of Γ/[Γ,Γ]) is not very
well understood for arbitrary n. The best lower bounds of the rank available in the
literature seem to be what follows from the work of Millson [31] and Lubotzky [24],
which gives that any arithmetic subgroup Γ (with a few restrictions when n = 3, 7)
contains a subgroup such that the dimension of H1(Γ,R) is at least one. In certain
arithmetic situations, we will be able to say more using a connection to automorphic
forms.
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A.4.1. Cohomology classes associated to automorphic forms. Recall the splitting
(A.2) due to Harder of the cohomology into a cuspidal and an Eisenstein part. We
give a brief overview of the description of H1

cusp(Γ,R) in terms of automorphic forms,
as in [37]. We recall the canonical isomorphism between H1(Γ,R) and the de Rham
cohomology group H1

dR(Γ\Hn+1,R) consisting of 1-forms. Inside H1
dR(Γ\Hn+1,R)

we define the subset of cuspidal harmonic 1-forms.

Definition A.2. A harmonic 1-form α = f0dx0 + f1dx1 + · · ·+ fndxn on Γ\Hn+1

is a cuspidal 1-form if
(1) α is rapidly decreasing at all cusps of Γ,
(2) for each cusp a and y ≥ 0, we have∫

Pa

fa,i(x, y)dx = 0 , i = 0, . . . , n ,

where σ∗aα = fa,0dx0 + fa,1dx1 · · ·+ fa,ndxn.

We denote by Har1
cusp(Γ\Hn+1,R) the space of harmonic cuspidal 1-forms on

Γ\Hn+1. Then we have the following identification

Har1
cusp(Γ\Hn+1,R) ∼= H1

cusp(Γ,R),

coming from [37, (2.14)]. This reduces the task of lower bounding the dimension of
H1

cusp(Γ,R) to constructing cuspidal automorphic forms. For congruence subgroups
Γ < SVn−1, this can be achieved using certain theta lifts developed by Shintani [45]
of GL2 holomorphic forms of weight (n + 1)/2 + 1 (for details see [37, page 21]).
This gives us non-trivial examples for which Theorem 1.10 applies for any n. In the
low-dimensional cases n = 1, 2 a lot more can be said, as we will see below.

Finally let us see explicitly how to construct unitary characters from cuspidal
automorphic forms. We let

Φ : Γ→ H1(Γ\Hn+1,Z), γ 7→ {P, γP},

for any P ∈ Hn+1, which induces the canonical isomorphism H1(Γ\Hn+1,Z) ∼=
Γ/[Γ,Γ]. For γ ∈ Γ and ω ∈ Har1

cusp(Γ\Hn+1,R), we define the Poincaré pairing

〈γ, ω〉 := 2πi
∫

Φ(Γ)
ω = 2πi

∫ γP

P

ω for any P ∈ Hn+1.

We note that that when n = 1 and f is a classical Hecke cusp form of weight 2
for Γ, then f(z)dz is indeed a harmonic cuspidal 1-form on Γ\H2 and the Poincaré
symbol is equal to (minus) the standard modular symbol (1.1):

〈γ, f(z)dz〉 = 2πi
∫ aγ/cγ

∞
f(z)dz = −〈aγ/cγ , f〉 .

We observe that if γ ∈ Γ is parabolic, then 〈γ, α〉 = 0. Hence if we define
χα(γ) := e(〈γ, α〉) then χα defines a unitary character trivial on Γ′∞. The ker-
nel of the map α 7→ χα is a full rank lattice L inside Har1

cusp(Γ\Hn+1,R). If we
assume that Γ is torsion-free, we indeed obtain the identification H1

free(Γ,R/Z) ∼=
Har1

cusp(Γ\Hn+1,R)/L.
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A.4.2. The case of H2. When n = 1, we have explicit formulas for the dimensions
of both the cuspidal and the Eisenstein part. More precisely we have coming
from [49, Prop. 6.2.3] that

H1
cusp(Γ,Z) ∼= R2g, H1

Eis(Γ,R) ∼= R2(h−1),

where g is the genus and h is the number of inequivalent cusps of the Riemann
surface Γ\H2. In particular if Γ = Γ0(N) is a standard Hecke congruence subgroup,

we know that g ∼
N ·
∏

p|N
(1+p−1)

12 and h =
∑
d|N ϕ(d,N/d) and we conclude that

we can find towers of Hecke congruence subgroups such that both the cuspidal and
Eisenstein part goes to infinity.

A.4.3. The case of H3. When n = 2 there has been a lot of activity recently and
we refer to the survey of Şengün [42] for an excellent and more thorough overview.
In this case no formulas are known in general for the ranks of the cuspidal and
Eisenstein part and the best one can hope for are lower bounds.

Regarding the Eisenstein part, we can describe it explicitly when Γ is torsion-
free. In this case, we have that H1

Eis(Γ,R) ∼= Rh, where h is the number of cusps of
Γ\H3, see [15, Proposition 7.5.6]. The same conclusion holds for co-finite subgroups
Γ ≤ SL2(OD), where OD is the ring of integers of the imaginary quadratic field
Q(
√
D) with D < 0 a fundamental discriminant not equal to −4,−3 (in which case

there might be torsion in Γ). In the case of co-finite subgroups Γ ≤ SL2(OD) with
D = −4,−3 the picture is much more mysterious, but a lot of numerics are available
in [41] and [15, Ch. 7.5].

For the cuspidal part there are some useful results giving lower bounds on the
rank. First of all Rohlfs [36] showed that

dimH1
cusp(SL2(OD),R) ≥ ϕ(D)

6 − 1
2 − h(D),

where h(D) denotes the class number of Q(
√
D). Furthermore Şengün and Turkelli

[43] proved that if D is a fundamental discriminant such that h(D) = 1, p is a
rational prime which is inert in Q(

√
D) and Γ0(pn) ⊂ SL2(OD) is a congruence

subgroup, then we have

dimH1
cusp(Γ0(pn),R) ≥ p6n,

as n→∞ (an upper bound of p10n has been proved by Calegari and Emerton [6]).
In the case of cocompact groups stronger results were obtained by Kionke and
Schwermer [22].

A.5. Torsion in the (co)homology of arithmetic groups. Now we will discuss
what is known about the torsion part of H1(Γ,Z) when Γ ⊂ SO(n+1, 1) is a cofinite,
arithmetic subgroup. In the simplest case n = 1, we know that all the torsion in the
abeliazation comes from the torsion in the subgroup itself and thus in particular
Γ/[Γ,Γ] is torsion-free when Γ is so.

In the case of n = 2 the torsion in the abeliazation of congruence subgroups (of
small conductor) were computed early on in unpublished work by Grunewald and
Mennicke. See Şengün’s work [41] for some recent extensive computations.

The study of torsion in the abelianization of Γ fits into a more general framework
of understanding the torsion in the homology of arithmetic groups as in the work
of Bergeron and Venkatesh [2]. Bergeron and Venkatesh have conjectured that
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when Γ is a congruence subgroup of SL2(OD) with D < 0 a negative fundamen-
tal discriminant, then the torsion in Γ/[Γ,Γ] grows exponentially with the index
[SL2(OD) : Γ].

More generally the conjectures predict that the torsion in the homology of sym-
metric spaces associated to a semisimple Lie group G will grow exponentially in
towers of congruence subgroups exactly if we consider the middle dimensional coho-
mology and if the fundamental rank (or “deficiency”) δ(G) := rank(G) − rank(K)
is 1 (here K is a maximal compact). It follows from [2, (1.2)] that the fundamental
rank of SO(n+ 1, 1) is equal to 1 exactly if n is even. And thus we see that we will
have exponential growth of the torsion of Γ/[Γ,Γ] when Γ runs through a tower of
congruence groups exactly when n = 2 (corresponding to Kleinian groups).

Thus for n > 2 the torsion should conjecturally not grow exponentially, but there
might still be torsion, which will also be arithmetically interesting. There seems
however to be no experimental or theoretical work available in this case.
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