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1 Introduction

Let p,, denote the n-th prime, and we define

G(X):= mafx(pn+l — Pn)

Pnt+1>

Our goal is to find a lower bound for G(X) as good as possible. First, we note that from the prime
number theorem we obtain
G(X)>(1+o0(1))logX

since the average gap between primes less than X is ~ log X. The first significant improvement was
achieved by Westzynthius [16] in 1931, who showed that the largest gap between consecutve can be an
arbitrarily large constant of the average gap, i.e.

G
Xlgnoo log X

In 1936, Erdés and Rankin [15] showed that

log X log, X log, X
(logs X)?

G(X) = (c+o(1))

with the constant ¢ = 1/3. As it is standard in the subject, we denote log,z = loglogx, logsx =
log log log z and so on. During the following years, there were many improvements for the constant c. A
significant breakthrough occurred in 2014, when Ford, Green, Konyagin and Tao [5] and independently
Maynard [14] proved that ¢ could be taken arbitrarily large. This asked a long standing conjecture of
Erdés. After that, the 5 authors joined forces and obtained the following improvement [6]:

Theorem 1.1 For X large enough,

log X logy X log, X

X
G(X) > o X

It is believed that the result above is the best obtainable with current methods.

We have the following conjectures regarding G(X). Using a basic probabilistic model of primes, Cramer
conjectured that

I G(X)

imsup ——= =

X_,oop (log X)?

Using a refinement of Cramer’s model, Granville [8] conjectured that in fact

G(X) _
limsup ————%= >2e 7.
X~>oop (IOgX)Q a

The best unconditional upper bound for G(X) is G(X) < X°5% by Baker, Harman and Pintz [1].
Assuming the Riemann Hypothesis, the best known upper bound is G(X) <« X'/?log X. We remark
that there is a lot of room for improvement in both the upper bounds and the lower bounds.

The goal of this project is to provide a clear exposition of the proof of Theorem 1.1. There are two key
ingredients in the proof. Firstly, we need an efficient hypergraph covering theorem, on which we will
concentrate in Section 4. Secondly, we need a uniform version of the multidimensional sieve approach,
which was developed in [13]. This process will be described in Section 5. We will describe our plan of
attack in Section 2, whilst everything will carefully be put together in Section 6.

2 Heuristics and outline of the proof

All works on lower bounds of G(X) have the same starting point. We want to rephrase our problem such
that it becomes a problem about sieving an interval with residue classes modulo small primes.



Definition 2.1 Let x be a positive integer. We define y(x) to be the largest integer y such that one may
select one residue class (a, mod p), for each p < x, which "sieve out” the interval [y] = {1,2,...,y}.

Lemma 2.2 Let P(x) =[] ., p.- Then

G(P(x) +x +y(x) = y(x) .

Proof Select residue classes (a, mod p) for p < x, which cover [y]. Using the Chinese Remainder
theorem, we find m with z < m < x + P(z) such that m = —a, (mod p), for all p < z. Then, for
1 <t <y, there exists some p such that ¢t = a, (mod p), and hence m +t = —a, + a, = 0 (mod p).
Therefore p/m +t and m+t > x > p, hence m + ¢ composite, for 1 < ¢ <y, which gives us y consecutive
composite numbers. |

Remark Our function y(z) is very similar to the Jacobsthal function j(z). If = is a positive integer,
then j(x) is the maximal gap between numbers coprime with x. Similar as in the proof of Lemma 2.2,
using the Chinese remainder theorem we see that

From the prime number theorem, we know that P(z) = exp((1 + o(1))z). Since y(z) = e°M*,

immediate consequence of Lemma 2.2 is that

an

G(z) = y((140(1))logz)

Hence, our goal is that, given an integer z, to find y as large as possible such that we cover [y] with
residue classes modulo primes less than . Hence, in order to prove Theorem 1.1, we can take
log zlogs =

=cr—— . 2.1
e v (2.1)

where ¢ is a small fixed positive constant.

Our goal is to cover [y] by residue classes (a, mod p), for p < x. We fix a number z we select later. We
select our residue classes (a, mod p) in 4 steps:

1. a, =0 for p € [2,log" 2] U (2, x/4]

2. Random uniform choice for a,, p € (log'® z, 2]

3. Strategic choice conditional on step 2 for p € (x/4, /2]

4. Use a, for each x/2 < p < z to cover each one remaining element.

Let’s first discuss the final step, which is the simplest. Suppose that after the first three steps the number
of survivors left in [y] is less than the number of primes considered in step 4. Then one can finish off by
using each prime in step 4 to remove one of the surviving elements by appropriate choice of (a, mod p),
for /2 < p < . By the prime number theorem, it will be enough if we can show that steps 1-3 leave at
most x/(3log x) numbers unsieved.

Now we look at the first step. The elements left uncovered are a subset of the z-smooth numbers (which
are few for appropriate z) and primes greater than z/4, since (z/4)log'®z > y. We expect to be left
with a2 y/logy ~ y/log x numbers uncovered. This is much better than the typical choice,

1 1 log 2z
1— - l—-- ) =ry——>—
y H < p) H < p> ylong log x

2<p<log'® x z<p<z/4

if z is large enough. We want to choose z as large as possible such that U(y, z) = o(xz/logx) (so that
they can be covered in the final step). ¥(y, z) denotes the number of z-smooth numbers less than y. For
this purpose, we use the following lemma to find an upper bound for z-smooth numbers:

logy

Tog = and assume 3logu < logz. Then we can bound the number of z-smooth

Lemma 2.3 Let u :=
numbers in [y] by

U(y,z) < e vlosutiylog



Proof Let 0 < ¢ < 1 be a quantity to be optimised later. We see that (y/n)? > 1 for all n < y and
(y/n)? >0, for all n > y. Let P(n) denote the largest prime factor of n. Then

U(y,z)= > 1< )y (%)U:ya > nla:ng<1_pl">_l

1<n<y n>1 n>1
P(n)<z P(n)<z P(n)<z
Denote
1\ !
((o.2) =[] (1 - U)
p<z P
We choose ) ) )
ulogu ogu
—1_ —1-_-2"s = 2.2
? logy log 2 - 2 (2:2)
Hence 1
log¢(o,8) =Y —+0(1)
p<z p
Now

DD

p<z p<z

1 1
( - ) +loglogz 4+ O(1)
7 p

using Mertens’ theorem. So we are left with evaluating the sum on the right hand side.
logplogu) 1

22055

p<z p<z p<z

using (2.2). Next, we use the convexity inequality
exp(ct) — 1 < (exp(c) — 1)t

which holds for ¢ > 0 and 0 < ¢t < 1. We apply with ¢ = logu and ¢ = log p/ log z to obtain that

Z(1_1>< u Zlogp:1022(1ogz+0(1)):u+0(1)

p? p) ~ logz P

p<z p<z

where we have used Mertens’ theorem again. Putting everything together we obtain
log (o, z) <loglogz+u+ O(1)

Hence
Uy, z) < e vlosutiylog, ||

Remark In fact, it is known that in the range log3 y < z <y, we have that

\I/(y, Z) ~ g ulog u+O(ulog IOg(Su))y

which is a theorem of de Bruijn [3]. However, this stronger asymptotic behaviour doesn’t improve our
bounds and the lemma above will suffice.

Since cx < y < cxlogx, a very efficient choice of z is

5= xlogs z/4log, x (23)

so that u ~ 4}Z§§i and wlogu ~ 4log, x. Applying Lemma 2.3 we obtain

logs x x
U —ulog u+u 1 Y 1 3 _
,2) e ylosE s logito®) g OggclogQ z log =

as desired.



Hence essentially we are left with
2 = {pprime: x/4 <p <y}
which we want to cover in steps 2 and 3 up to O(z/logx) survivors.
For step 2, we choose (@, mod p) uniform at random, for each prime log!® 2 < p < z. Denote
S := {p prime : log'’z < p < 2} (2.4)

the primes used in step 2 and
P ={pprime : z/4<p<ax/2} (2.5)
the primes which we use in step 3.

We take residue classes @ = (as mod s)4ec.» chosen with equal probability and we define the respective
random variable &. Let

S(@)={n€Z:n#as (mods) forall se.”}

and let
2(3):=2n8(7a) (2.6)
the elements left unsieved after step 2. We expect that step 2 will sparsify 2 by a factor of
oo H 17} N1010g2x:40 log3
P log 2z log zlog; =

log'0 z<p<z
Indeed, we will see that, with high probability,

1
12(3)| ~ 0L ~ 4022827
logy log

Note that if we had o5l < 52, we would be finished by having each prime greater than x/4 to cover
one surviving element (same as described in step 4). This is actually the argument of Erdés and Rankin
which gives a value of y smaller by an order of log, z. Hence we would like that the average number of
survivors sieved by primes in step 3 is about log, x.

We return to our problem. We want to choose (r, mod p) for p € & such that
e The sets R, :={n € 2(d):n=r, (mod p)} are large on average, for all p € &
o U,co Ry covers most of 2(d) efficiently (little overlap)

Sets of the type R, are hard to describe and to work with. Instead, we fix an admissible k-tuple
1< hy << hp < k%, where k will be determined later. For example, let ki, ..., h; be the first &
primes larger than k, i.e. h; = pr(k)+i- We want to work with the sets of the form

ep(n, @) :={n+hp:1<i<k}n2(a)

For each @, we want to construct random variables (n,(@)),ec2 and corresponding random sets
e,(d):={n,+hip:1<i<k}N2(Q)

such that the sets e, (@) are large on average and have little overlap. The random variables n, (@) (and
hence also e,(@)) will be defined depending on a fixed @ in the range of @. So when we work with n,,
we consider @ fixed. In order to construct (n,)(@), we will use sieve weights methods which appeared
firstly in [12] and then further developed in [13], [2] and [14].

Heuristically, we will show that |e,(@)| > log,z on average and that they have very little overlap.
Hence, we expect

xlogy x

U e, ()| > |2|log, x >

e log x



Since we expect |2(a@)| ~ 0 ouz> We are done if

Y xlogy x

Ulogm —  logx
This justifies our choice for y in (2.1).

Indeed, we will prove the following theorem, which tells us that the sets e,(@) are large enough on
average and ”well-distributed”:

Theorem 2.4 For k < (logz)'/® and (hy,...,hy) admissible set with h; < k? for all i, we have that
with probability 1 — o(1) in &, we can construct random variables (n,(@))pc o such that

o (Sets are large enough) For all p € &, we have that

E(lep(@)]) > logk

o (Sparsity) For allp € & and q € 2, we have

P(q € e,(T)) < x73/°

e (Small overlap) For distinct q1,q2 € 2,

Z P(q1,q2 € €y(@)) < 27/°
peEZ

e (Elements covered more than once in expectation) There exists a universal constant C > 1 such
that for almost all ¢ € 2(7),

Y Place, (@) ~C

peEP
Theorem 2.4 informally says that for almost all @, we can construct random variables n, (@) such that
the probability of ¢ € 2 to belong to e,(d) is small; intersections between e,(d@) are very small; but
that for almost all ¢ € 2, the sum of probabilities is around the same.
We can think of 2(@) as the vertices of an hypergraph and e, (@) as random edges in the hypergraph,
i.e. random subsets of 2(@). Heuristically, we know that all edges are small (Je,(@)| < k), the degree
of each vertex is small on average, there is very little overlap and that each vertex is covered in average
at least once. We would like to deduce that we find an efficient covering of the vertices. This will be the

subject of Section 4.

3 Probability notational conventions and useful lemmas

We will use boldface symbol (such as X or a) to denote random variables. All the random variables we
consider will be discrete. The range or the support of X are all values X such that P(X = X) > 0. We will
use non-boldface symbols such as X or a to denote elements in the support of random variables.

Let E is an event of non-zero probability. For any event F', we denote

P(FAE)
and for any real-valued random variable X,
E(X1E)

We recall the classical inequalities of Markov in Chebyshev. Let X be a positive real valued random
variable and g = EX. Then for A > 0, we have that

P(X > ) <

>|=



and

1
P(X — pl 2 AWEIX — uf?) < 4.

We will use the following lemma several times:

Lemma 3.1 Let A >0 and 0 < e <1 and X a random variable such that ;1 = EX = A(1+4 O< (€)) and
EX? = A%(1 + O< (¢)). Then, for any § > €, we have that

P(|IX — A| > §A) <

(0—e?

Proof We first see that we can easily bound the variance
Var(X) = E[X — pf* = EX* — pi® = A*(1 4+ O< (¢)) — A%(1 + O< (2e + €%)) < 4eA?

Next, using Chebyshev’s inequality, we obtain

B(X — A| 2 5A) SB(X - | 2 (6 - 0A) <

This lemma is very useful for showing that a random variable is very concentrated once we know estimates
for the first and the second moment. Most of the time, we will have estimates of the form EX =
A1 + O (e)) and EX? = A(1 + O (e)), for some very small e. Then by taking § = ¢'/3, the lemma
provides us with

P (|x Al > 61/3A> -0 (61/3) .

We will also need Hoeffding’s inequality:

Lemma 3.2 Let Xy,...,X,, be independent random variables such that for alli, EX; = 0 and |X;| < B;
with probability 1. Then, for any t > 0,

t2
P(X+ 4 X| 2 ) < 2050 (-~ yom—s
227:1322

4  Hypergraph covering lemma

4.1 Heuristic discussion

Consider the following general setting. Let (V, E;);cs be a collection of hypergraphs, for some fixed finite
set V and I an index set (so for each ¢ € I, E; is a collection of subsets of V). We want to select a
single edge e¢; € F; such that Uiel e; covers as much of V' as possible. We think of V'\ .. e; as a sifted
version of V', where each e; represents on step in the sieve.

iel

Let’s first look at the naive method of choosing random edge e; uniformly at random from F;, indepen-
dently in 7. In this case, the probability that a vertex v € V survives the sieve is

P <U ¢ Uel> = H(l — P(’U S ei))
il iel
In practice, we assume that the probabilities P(v € e;) are small, so 1 — P(v € e;) = exp(—P(v € €;)).
Hence
P ( | ) ~ exp(—di (1))
iel

where dr(v) = > _,c; P(v € e;). If we have the uniformity assumption d;(v) ~ d, for allv € V, then

V\Uel—

i€l

E ~ V] exp(~d)




so we expect that the sifted set V '\ |, .; e; to have density approximately exp(—d).

iel
It turns out we can do better than this. Choosing e; independently is inefficient because it allows for
many overlaps between random edges. From now on we denote the random variable e; to be uniformly at
random from F;, independently in i. We want an optimised choice of a random variable €] such that we
can guarantee that e} are almost always disjoint. We impose the following uniformity conditions:

e (Edges not too large) For all ¢ € I, |e;| < r with probability 1

e (Sparisity) For allv e V, 3. P(v € e;) < d;

e (Small codegrees) For distinct vy, va € V, 3. P(v1,v2 € ;) < éd, for some small 4.
We use the Rddl nibble method. We partition I = I3 U I U--- U I, and proceed in the following
way:

o (Nibble 1) Let I; C I small. For ¢ € I;, we choose €] independently uniformly at random (so

e, =e;). Let
Wi=V\ (e
el
Then, for each v € V,

Plve W) = H(l —P(v € e;)) = exp ( ZIF’ (v Ee) ) = exp(—dr, (v)) =: Pi(v)

i€l i€l

where dp, (v) := >,y P(v € ;). Then E[W;| =" _\, Pi(v) and for an small edge e C V/,

veV
Plec W)~ [[ (v (e)
veEe

since we assume we have small codegrees.

e (Nibble 2) Let I, C I'\ I small. For i € I, we want to force e, C Wj. If e € E; such that e C W7,
we choose e, = e with probability proportional to 1/P;(e). So take

i if e C W,
P(e; = e|W1 = Wl) = Py (e) e . L
0 otherwise

for some normalising constant ¢;, for all ¢ € Is. So €] is e; conditioned to to the event e, C Wi and
then reweighted by Pj(e;) to compensate for the bias based by the conditioning. Also, they are
jointly independent for i € I. Note that we have a problem if P;(e) = 0, but this is not expected
behavior and we’ll treat everything carefully later. Let

Wg::Wl\Ue;.

icly
Fix v € V. Then we will see that
Plv e W) = P(v € W) H (1-P(v €eljve Wy)) ~ Py(v)exp <—Z:iel;]}1(veei)) =: Py(v)
i€l 1(v)
For a small edge e C V, we obtain that
Ple C W) &~ H Py(v 5 (e) .

vew

e (Nibble m) For i € I,,, and e € E; and e C W,,,_1, we choose e, = e with probability proportional

to 1/Ppn-1(e). Let Wy, =Wy, 1\ U;c; € and dp,, (v) = > ,c; P(v € e;). Then for allv eV,

P(v e Wy,) = Py_1(v) exp (%) =: P,(v) ,

where and for small e C V', we have

P(e € Wp) & [ [ Pm(v) =: Prn(e) .

veEe



In view of the algorithm described above, it is useful to have the following definitions:

Definition 4.1 Let (V, E;);c; a collection of hypergraphs and for each i € I, let e; be a random set of
V supported on E;. Let I =1, U---UI,. For all j € [m] and v € V we define the normalised degrees

dj(v) ==Y P(vee) (4.1)

i€l

and then we recursively define Pj(v) by setting Po(v) =1 and

Pji1(v) = Pj(v) exp (—dgl(g)) : (4.2)

The key idea of the process described above is that for i,j € I, e} and e; will always be disjoint, unless
i and j belong to the same nibble. We formalise the process in the following theorem:

Theorem 4.2 Let D,r,A> 1,0 < 6,k <1/2 and m > 0 an integer. LetV be a finite set. Let Iy,... I,
be finite index sets, and for each j € [m] and i € I}, let e; be a random subset of V' such that:

e (Edges not too large) With probability 1, for all j € [m] and i € I,

#e;, <r (4.3)

o (Sparsity) For allj € [m], i€ I; andv eV

)
Pv e e;) < TPHE (4.4)

e (Small codegrees) For all j € [m] and distinct v1,v2 € V
> P(vi,vz € €;) <6 (4.5)

iel;

o (Degree bounds) For j € [m] and v € V, let d;j(v) and P;(v) be defined as in Definition 4.1. Then,
for j € [m] and v € V, we have
dj (U) < DPj_l(U) (46)

and
Pj('[}) > K. (47)

o (Smallness bound for §) There exists a universal constant Co > 1 such that

10m,+2

= (cpuw)) (48)

Then, for all v € UL 1;, we can find random subsets e, such that the support of €} is contained in the
support of e; union with the empty set and for all0 < J <m and e CV with |e| < A —2rJ, we have

Plecvy LJJ Uei| = (1 +0< (51/10“1)) Py(e) (4.9)

j=liel,

where Pj(e) := [],c. Pr(v).

The proof will be described in detail in the next section. We now focus on the main application of
it:

Lemma 4.3 Let f(x) such that lim,_, f(x) = 0co. Let I and V be sets with |I| < x and f(x)? <|V| <
2°0. Let 6 < 2~ Y/30, For each i € I, let e; be a random subset of V' such that

e (Edges not too large) With probability 1, for alli € T
#e; <r(x) (4.10)



(Conditions on growth of f(xz) and r(x)) We have that

r(z)f()*? <logx (4.11)

(Sparsity) For alli € I and v € V
P(v € e;) < 6z~ 1/? (4.12)

(Small codegrees) For any two distinct vi,ve € V,

ZP(U17U2 S ei) <4 (413)
el

(Elements covered more than once in expectation) For all but at most o (%) elements v € V, we

have .

P i) =C+0< | —= 4.14
Sroee)=C <(757) (414
for some global constant C' satisfying glogf) <O« 1

Then, for all i € I we can find random subsets e C V' which is either empty or a subset of V' which e;
attains with positive probability such that

#{veV 1 vel, for alliGI}NM (4.15)

f(x)
with probability 1 — o(1).
Before we proceed with the proof, we would like to discuss why this lemma is very useful. Very informally,
it states that if we have a collection on hypergraphs such that all edges are small, the degrees are on
average small and the codegrees very small, and that if every vertex is covered on average at least once,
we can find a very effective almost covering of V' with one edge from each hypergraph. If we compare it
with the naive approach of choosing uniformly independently at random as discussed in the beginning of

the section, we expect that the density of the elements left uncovered is around exp(—C'). This method
provides us a density of at most 1/f(x).

We chose to expose this lemma in slightly more generality than in [6] because we have liberty in choosing
our parameters f(x) and r(x) that might be useful in further applications. Sometimes it might be useful
to have larger bound for the size of edges, which means r(x) larger, and sometimes we might want to
guarantee better covering, which means f(z) larger.

We now proceed with the proof of Lemma 4.3 assuming Theorem 4.2.

Proof The number of elements in V' that fail (4.14) is o (%), so we may discard these elements from

V and assume (4.14) holds for all v € V' (it is easy to see that this does not influence our assumptions
or the conclusion we want to prove).

Let m = L%J (so m is the largest integer such that 5™ < f(z)). We want to find Iy, I2,... Iy

disjoint subsets of I such that uniformly for all v € V and j € [m]:
; 1
P(v € e;) =57 1logh+ O () 4.16
Srece) o (1.16)

For this purpose, let t; be uniform in [0,1] and independent for each i € I. Let t = (t;)ics. Since
C > %log 5, we find disjoint intervals %1, ... %, in [0,1] with |.%;| = Lclogs, We define the random
sets

L(T):={iel:te.7}.

For v € V, j € [m] and ¢ € I we consider the independent random variables

X . (E») . ]P(’U S ei) ifi e ]J(?)
vnd o otherwise.

10



Then we clearly have that

Y EX,i; =Y Pvee)P(ic [;(Y) =15 Pvee) =5 7log5+O< ( 4/5 ) (4.17)

2
iel iel icl f(z)
using (4.14). Since |X, ; ;| < 6271/2 by (4.12), we apply Lemma 3.2 to obtain
1 f@)~ 1 ~100
v,1 EXy i Z — S 2 —_— S 2 [
<| ; o (%) f(x)2> o ( 20711 = 2P\ Tasyt) <

since 6 < x —1/50 and f(x) < logz. Since |V| < °° and m < z, there exists a deterministic choice T of
T such that for all v € V and j € [m], we have

30K (T) = EX iy (1)) € (418)
el

Our choice of ¢ will give us a deterministic choice for I;. Putting together (4.17) and (4.18), we obtain
- ; 2
ZXW»J( t)= Z P(v € e;) =5"7log5+ O< <2> (4.19)
i€l i€l f(z)
for all v € V, j € J, which is exactly what we wanted to prove in (4.16).

We are now ready to look at the normalised degrees. Since 5™ < f(x), the last equation implies that

dr;(v) =5"7logh (1 +O< (fé)))

for all v € V and j € [m]. We prove by induction that
Pj(v) =577 (14 0<(4'/f(x))) (4.20)

Indeed, it is easy to check for j = 1 and

Pria(0) = Py0)expl(—di, ., (0)/Py(0)) = 5771+ 0= (o) exp (- 2520 ORI T

=5 U1+ 0<(4/f(2))) exp (0<(2-47/f(x))) = 5~V (1 + O (4 / f(2)))

log 4

loe 5 We obtain that

as desired. Hence, since j < m < log f(x)/log5, if we take v =1 —

Pi(v) =577 (1+ O<(f(x)™")) (4.21)
for allv € V and j € [m].
We check that we satisfy all the conditions of Theorem 4.2. Let A = 2rm + 2. We see that (4.11) is

chosen such that (4.8) is satisfied and all other conditions follow easily. Indeed, let x = f( and D =1
to see that (4.6) and (4.7) are satisfied. Also
log 10
f(z) s r(z)log f(z) < logx
since log 10/ log5 < 3/2 and then (4.8) follows.
Hence, we obtain random variables e;, for i € UJL;[; such that
Ploég U U e | = (1 + O< ((51/10’";“)) P (v) (4.22)
J=14€l;
for all v € V, and
PlowgJUe|= (1 +0< (51/10"‘“)) P (01) P (v2) (4.23)
J=14€l;
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for distinct vy, vz € V. We set e = 0 for i € I\ Jj~, I;.
We want to use Lemma 3.1 to approximate #{v € V : v € €}, for all ¢ € I'}. For this purpose, we define
the random variable

X:=#{veV :vge, foralliel} = Z 1v€U}’;1Uiezje;
veV

and we need to approximate EX and EX2. From (4.22) and from the upper bound on § we see that

1 -V
EX = 5 (140 (f@) ™)) V]

and from (4.23) we obtain that

1 1

2 _
X = F@)?

(L+O(f@) ™) VIV 1) + (140 (f(z)™)) V]

~

= 8

(x)?

= s 10 U@ ™)V

Using that |V| > f(x)? we obtain that

P (‘ - }8)’ > IVIf(x)‘l‘”/S) < flz)™/3

which implies the conclusion. |

4.2 Proof of Theorem 4.2

We proceed by induction on m. There is nothing to prove for m = 0, so suppose m > 1 and that the

conclusion is proved for m — 1. Hence, for i € U;”:]ll ; we find random variables e/ such that

Plec V\WU1 Uei| = (1 +0< (51/10’")) Pr_i(e) (4.24)

j=1icl;

for all e C V of cardinality at most A — 2r(m — 1). Denote the random variable

W:V\L_J Ue;.

j=1 iel,

Our goal is to find random variables €, for i € I,,, whose support is contained in that of e; together
with the empty set such that

P <e AN e;) - (1 +0< (51/10“1)) P(e) (4.25)

1€l

for all e C V with |e] < A — 2rm. Hence we may assume A > 2rm if we want our theorem to have any
meaning.

As discussed earlier, we want to choose €, with probability proportional to 1/P,,_1(e) conditional on
e; C W. For this purpose, for each W in the essential range of W and i € I,,,, we define the normalisation
factor

X, (W) = %m (4.26)

We want to avoid the cases where X;(W) = 0. In fact, we will show that X;(W) is very close to 1 with
high probability. We define

(4.27)

F(W) _ 1 if |X1(W) — ]_‘ < 53><110"n
' " 10 otherwise.

12



Now we are ready to state the definition of ). If F;(W) = 0, we let €, = ), or in other words,
P(e, = O|W = W) = 1. Otherwise, if F;(W) = 1, for each ¢; € E; we define

P(e;=e;) . )
P(e; = €Z|W = W) — Xi(W)Pm—1(es) if e C W (428)
0 otherwise.

We check this is a well defined probability distribution:

3 Ple; = o|W=W) ZP(eZ: =1

e €E; X eleW m—1(

In order to make the proof easier to follow, we split it into several lemmas. First we check that F;(W) =1
with high probability:

Lemma 4.4 1
P(F;(W)=1)=E(F;(W))=1-0 <5W) .
Proof We see that 1
P(F;(W) = 0) = P(|X;(W) — 1| > §3%i07)

and this suggests using Lemma 3.1. So we want to provide good approximations for EX;(W) and
E(X;(W)?). We begin with the first one:

ZZ Pel—ez ZPel—el CW)

e e
W eiCW 1(e:) 1(e:)

z (1102 (97)) Pt = (10 (370

1

using (4.24). Now we compute the second moment:

Z Z Ple; = e;) P(e; = fZ)IF’(W —W) = Z Ple; = ei) Ple; = fi)IF’(ei Ufi CW)

W es, fiCW Pri1(ei) Poo1(fi) bt Pr—1(ei) Pm-1(fi)
_ 10" 1
(1+og (6 ))E;]P’ L Py

using again (4.24) and that Pp,—1(€;)Prn—1(fi) = Pm—1(e;U fi) Pr—1(e;N f;). We note that P,,—1(e; N f;)
is 1if e; N f; = 0 and it is at least x" otherwise, using (4.7). Hence

1 1
> Ple; fz)m—1+ > PBlei=ei)P(e; fl)(ﬂll(elr-]fl)_1>

ei,fi eiNfi 7&@

=140 (wZP(ei =e¢) Y Ple e,»)) =140 (rék™")

e; vee;

where we used (4.4) for the last equality. But it is easy to see from (4.8) that
rk" < Ak™A < 6 Tomr
which clearly implies r0x™" < 577 . Hence

E(XG(W)?) = (1+0 (617)) .

Now just applying Lemma 3.1, we obtain P(|X;(W) — 1| > §axiom ) < 535107 | as desired. |
Fix e C V with |e] < A — 2rm. Recall that our aim is to prove that (4.25). We note that

P(eCW\ U eg> ZP(@CW\ U ‘WW)IP’(WW)

€1, €Ly,
= ZP(@CW\ U e;.|w_W>IP(W_W)
eCW i€l
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since P (e C W\ U;e; €jlW=W) =0if enW = (. By the induction hypothesis (4.24), we know
that

PleC W)=Y P(W=W)=P,_i(e) (1 +0< (51/10’”)) .
eCW

Hence it is enough to prove that

P(eéw)egvﬂchW\ U e;W:W>P(W:W): (1+O(5W))exp <— %)

i€l

Let Y(W) =P (e C W\ U, €W =W). Then (4.29) is equivalent to

E(Y (W)le ¢ W) = (1 +0 (5*)) exp ( m> (4.30)

Lemma 4.5 Let W in the essential range of W such that e CW. Then
Y(W) =P (e cw\ | ew= W) - (1 +0 (51/“””)) exp (— Y S PweelW= W))
i€l i€l,, vEe

Proof We observe that, since €} are jointly independent for each ¢ € I, conditional on the event
W=W:

P(eCW\ U e;W:W> =[] 1 —Plene; #0|W =W))
i€l i€l

Of course, we want to approximate the product on the right hand side by an exponential, so we need to
find upper bounds for the probabilities in order to estimate the error terms. Clearly P(e N e} # )|W =
W) =0is 0 if F;(W) =0, so now we consider the case F;(W) = 1.

Plene; #0W=W) <Y PueeW=W)<> Y Pl =eW=W)

veEe vEe e;vEe;

< AH‘,iT‘P(’U € e,') < AH7T5|Im|71/2

where we have used the definition of €] (4.28), |e|] < A and the sparsity assumption (4.4). Hence

1_p(eme;¢®|W=W)=exp<—“”(eﬂeiMW:W)”O(W)

Using (4.8), we notice again that A2x=2" < A25~4 <6~ T , and so (Axk™27§)2 < SY/10™  Hence

[T @ -Plene; #0|W =w)) = (1 +0 (51/10’")) exp ( > Plene] # OW = W))) (4.31)

i€1m, 1€l

Next we see that

Plene; #0W=W) =) Puce[W=W)+0| > P,wecelW=W) (4.32)
vee v, w,ce
VAW

We estimate the error term:

YD PhweeW=W)=> Y > Ple=eW=W)

iel,, v,w,€e 1€l,, v,w,€ee;:v,wEe;
VFW

VFW
< Z Z KT P(v,w € e;) < A%kTT6
i€l,, v,w,ce

vHFW
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using the condition (4.5). Similarly as before, A25~"d < §'/1°" so putting together (4.31) and (4.32)
we obtain

[T a-Pene #0W =w)) = (1+0 (51/10m)> exp <_ S S PweeW=w)+0 (51/10’")>

i€l i€l,, v€e

_ (1 410 (51/10’"» exp ( S S Pweew= W)) |

iel,, v€e
Lemma 4.6 Conditionally on e C W, we have that

Y Pueew) =Y Z P o(gW)

1€ Ly, 1€, €ivEe;
e, CW

with probability 1 — O <§W)

Proof We note that P(v € e}|W = W) = F;(W)P(v € e}|W = W). Hence

_ _ Fiy(W) Ple; =e;) _ A o P(e; = e;)
B(v € €f|W = W) = < Zej ey~ (140 (1= F(w) + 657 ) ) Z; oy
eiCW W

We use this approximation because, from Lemma 4.4, we expect F;(W) = 1 most of the time. Hence

Srwedwow)= Y ¥ MO 5o (1 pn s gmie) 3 M)

€;
i€l i€1,, civEe; Prn-1(e:) il e;ee;
e, CW e, CW

We aim to find an bound for the error term. From Lemma 4.4, we know that E(F;(W)) =1-0 (53“10’" ) ,
which implies that

1 HD(@CW)—O((SW) 0(5W)
E(F;(W)lec W) = BeCW) > EW)P(W =W) = SeCW) i A
eCW m—1.€

Let

2W):= Y (1- RW) +6587) 30 Pez—@)

€1, €t ée{/le/
€;

Then clearly
) K K™ Z (1— ; 53x110m>IP(v€ei)

€Ly,
hence

-Tr

K

_ gaavmd; (v) < KTEET0T ) (v) < kTAgEIT & Saxdom
mel(e)

E(Z(W)le C W) <

We now use Markov’s inequality to obtain that

[P(Z(W)Zém)<6(4xfom_sxllom) :68><110m . I

Lemma 4.7 Conditionally on e C W, we have

(e; =e;)  dr,(v) Fxi0™
> ZleC"VP_()_Pni_1(v)+0((S )

icl,, ei:vEe;

with probability 1 — O (§W>
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Proof Let
P(e; = e;)
Z Z lecew 5=+ “1(ed)
i€l,, eiivEe;

We would like to use once again Lemma 3.1, so we want to approximate E(X(W)le C W) and
E(X(W)2le C W). We begin with the first one:

BXX(W)le € W) = gt 3 30 3 ducw 20 SBW = W)

W eCWi€l,, e;:vEe;

el—eZ PleUe; C W)
Z Z Ple C W)

i€, e;vEe; m 1 87’
P(e; =¢€;) Pn—1(eUe;)
— 1—1—0(51/10 ))
( 1621 eq;ee m 1 67 Pm—l( )

using the induction hypothesis (4.24). We proceed similarly to the proof of Lemma 4.4. Since v € eNe;,
we have that
Pm_1 (6 U 61') 1

Pr-1(€i)Pn-1(e)  Pm-1(v)Pn-1(eiNe\ {v})

Now, P,,—1(e; Ne\ {v}) is 1if e; and e\ {v} are disjoint and at least k" otherwise. Hence

Z Z Pez—eZ m;eUeZ vaeez 77,2 Z Uwfe)zz

161

i€l,, eiivEe; 1€l wee\{v}
dr,, (v) —(r+1) dr,, (v) 1/10™
_ _r\v) r A) = 01, \V) /10
Poa@w) ¢ (s 0s4) Poaw) ¢ (6")

Hence, we have that
dr,, (v)
m—1 (U)

E(X(W)le € W) = (1 +0 (51/10"‘)) (4.33)

We now study E(X(W)Q\e CW):

E(X(W)2[e ¢ W) = eCW Y Y Y, CWlfJCWIP;el_l_(:Z)) ;:ilz(}ijﬁ)P(W=W)

W eCW i,j€l,, eitvEe; fjvef;

:(1_’_0(51/10’”)) Z Z Z ez—e (m_l(;;j)) m— }Sj_UlZ)UfJ)

6
i,j€Ly ei:vEe; fivef; 'm 1 v

We note that
Pm_l(v)QPm_l(e Ue; U f])

Pr—1(€)Pr—1(ei) Prn—1(f5)

is 1 when e\ {v}, e; \ {v} and f; \ {v} are pairwise disjoint and otherwise is at most

Y(ei7 f]) =

—27 Hence

Ve f)=1+0 (s Y (lwee, +luwer,)+ >, luey,
wee\{v} wee;\{v}

We note that

Z Z Plv,w € e;,v € ej) <dy,, (v Z Z (v,w e e;)) < DA

4,J€Im wee\{v} wee\{v}i€lnm
using (4.6) and (4.5), since dy,, (v) < DP,,_1(v) < D. Similarly,
Z Z P(v € e;,v,w € ej) < DA

4,5 €Lm wee\{v}

Z Z Z P(e; = e;) Z P(v,w € e;) < rdy,, (v)6 < Dré

i,j€Ln eiivEe; fivef; wee;\{v}

and
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Using again the smallness condition on & (4.8), we know that k2" DAJ < §'/19"  hence
E(X(W)2|e - W) _ ( dlm( ) )2 +0 (51/10771) '
Pm, 1 (’U)
and the conclusion follows as an easy application of Lemma 3.1. |

Now we are ready to put everything together and complete the proof of Theorem 4.2. Recall from (4.30),
that it is enough to prove

a0 W)= (140 (57 oo (0

where V(W) =P (e C W\ U,¢;. €/W =W). From Lemma 4.5, we know that

m

Y09 = (10 (%) e (- ¥ Soro e w - w)

i€l,, vEe
Next we use Lemma 4.6 and that 0 < Y(W) < 1, for all W to obtain

E(Y(W)|6CW):(1+O(51/10m))exp —Z Z Pell_ee O<6W> +O(5W>

= (1+0(5")) exp _Z Z% +0 (g5t | + 0 (5tom)

— (140 (557 ) ) exp _zz{’gj; +0 (gwtom)

e;CW

where we used that |e] < A < §—1/10m Finally, using Lemma 4.7, we obtain

E(Y (W)le € W) = (140 (570 ) ) exp <_z€: (% Lo (5m)>> +0 (s5bm)
- (1+o (5W))exp (-%ﬁif%) +0 (5) .

The conclusion follows from the fact that

exp< ) p’"‘ 1), ) > exp(—AD) > 517+

vee

using once again (4.8) and (4.6). This concludes (4.30) and hence the proof of Theorem 4.2. |}

5 Sieve estimates

5.1 Introduction

Consider the following problem. We fix an admissible k-tuple (hq,...,hx) and we would like to show
there exists infinitely many n such that many of n + h; are prime. We recall the key idea from [12]. We
want to construct sieve weights w(n) which are large when many of n+ h; are prime and small otherwise.
Then we look at sums of the form

Six)= Y w(n)

z<n<2z

k
Z Z 1(n + h; prime)w(n)

z<n<2z i=1
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If we can show that Sa(x) > wSi(x), then there exist some values of n € [z,2z] such that at least u of
n + h; are prime.

Theorem 5.1 (Maynard) For k < (logz)'/® and admissible k-tuple (hy, ..., hi) with h; < k? for all
i, there exist weights w(n) such that So(n) > logk Si(n).

Recall from the discussion from the first section that we want to construct sets of the form {n + h;p :
1 < < k} that contain many primes on average, for p € 2. Hence in our case, we want to construct
sieve weights w(p, n) such that w(p,n) is large when many of n + h;p are primes, for p € &2. Indeed, we
will deduce the following theorem:

Theorem 5.2 (Ford, Green, Konyagin, Maynard, Tao) Let k < (logz)Y/® and (hy,...,h;) an ad-
missible k-tuple contained in [2k*). Then we can find weights w : P x (ZN[—y,y]) — R such that there
exists a quantity t and u = log k with the following properties:

(a) Uniformly for every p € &,

Z w(p,n) ~ ty (5.1)

In|<y
(b) Uniformly for every q € 2,
> w(p,q—hip) ~ t|Pu (5.2)
peP i=1
(c) Uniformly for every p € & and |n| <y,
w(p,n) =0 (:ﬂl/g) (5.3)

We note that (5.1) is similar to a sum of type S; and that (5.2) is similar to a sum of type S3. We will
see in Section 6 how this sieve weights w(p, n) help us to construct sets of the form {n+h;p:1 <14 <k}
with the required properties. The focus of this section will be showing how to prove Theorem 5.2.

We begin by recalling the classical Bombieri-Vinogradov theorem, which tells us that the average error
term in the prime number theorem for arithmetic progressions is small.

Theorem 5.3 (Bombieri-Vinogradov) Let A >0 and z'/?(logz)™* < Q < x'/2. Then

max max |7(z;q,a)— M <A 351/262(10gac)5

S = alaa)=1 é(q)

We want to obtain a better upper bound. We need to take into consideration possible Siegel zeros.
From the Landau-Page page theorem [4, Chapter 14], we know that there exists a constant ¢ such that
for @ > 100, there exists at most one primitive character x of modulus at most @ with a zero in the

region
c

7= Tog(QL 1 1)

Taking this into account, we have the following modified version of Bombieri-Vinogradov [4, Chapter
28]:

1—

Theorem 5.4 There exists a universal constant ¢ > 0 and B = B(z) < x which is either 1 or a prime

such that
m(z;q,a) — ;zg;‘ < xexp (—c\/logx)

5.2 Construction of sieve weights

Definition 5.5 A linear form is a function L : Z — Z of the form L(n) = an+b, with integer coefficients
a,b and a # 0.

A finite set £ = {L1,... Ly} of linear form is admissible if Hle L;(n) has no fized prime divisor, i.e.
for every prime, there exists an integer n, such that Hle L;(np) not divisible by p.
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Fix £ an admissible set of linear forms. We define the multiplicative functions w = we and ¢ = p»
and the series Gp (%), for an integer D by

. k i(n)= mo
o(d) =] —wp) (5.5)
pld
(o e@Y ()
Sp(2) };[) <1 ; > <1 p> (5.6)

Since .Z is admissible, we have w(p) < p, for all primes p, hence ¢(n) > 0 and &p(¥) > 0 for all integers
D. Also, it is not hard to see that w, =k for all p{ Hle ai [ [;4;(a;bj — b;a;). This implies that indeed
the product in the definition of &p (%) is convergent. We denote &1(.%) =: 6(¥).

Since w(p) < min(k,p — 1), we observe that

ounJ0-2)(-3) = L3000

ptD p<k,ptD = p>k,ptD

1 k2
>[[=[[(1+0(=)) = exp(-Ck) (5.7)
p<k P pSk p

for some universal constant C. In the products above, we dropped the restriction p 4 D since all the
terms are less than 1.

Let B as in Theorem 5.4 and k = (logz)'/>. Let W := Hp§2k2,p1’3p' Given a prime p 1+ WB, let

1 <rp1(&) < < rpup)(Z) be the w(p) residue classes for each Hle L;(n) vanishes modulo p. For

such a prime p, for each 1 < a < w(p), let jp o = jp.a(-Z) the smallest element of [k] such that
Lj, . (rpa) =0 (mod p) .

For any L € £, there is at most one residue class for which L vanishes mod p. Thus, jp1,...,Jpwp)
must be distinct.

We construct sieve weights w(n) = we(n) such that w(n) = 0 if (Hf:1 L;(n),W) # 1. This condition
guarantees that if w(n) # 0, then all L;(n) do not have small prime factors. Otherwise, we let

2 2
w(n) = Z )\dl,u.}dk = Z )‘d (58)
di|Li(n) di|Li(n)
for some real coefficients A\g depending on d = (dy, ..., dg).

We want to restrict the support of A\g to (%), where

D (L) ={deNF . p2(dy...dy) =1;(dy...dp,, WB) = 1;
(dj7p) =1 lfj ¢ {jp,lv e a.jp,w(p)}} (59)

The reason we choose there restrictions is that we want different components d and e appearing in the
sum (5.8) to be relatively coprime. Indeed, let d and e both appearing an the sum and p|(d;, e;), for some
t # j. Then p|L;(n), hence ¢ must be the chosen index for the residue class n (mod p). But similarly j
must be the chosen index for the same residue class, which is a contradiction. Hence a prime will divide
only elements with the same index appearing in the sum.

We define

1 log ry log r
A = pu(dy...dp)dy...d < E F 5.10
e k) kGwp(Z) o(ry ... 1k) (logR7 "log R ( )
r€@k(f)
di|r;, for all 4
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Here, F : R* — R will be a smooth function supported on {(t1,...,tx) € RX : ¢; +--- 4+, < 1}. This
condition makes sure that the terms in the sum in (5.10) are non-zero only if 71 ...7; < R. There is
some liberty in the choice of R, but for our purposes we take R = /9.

We use the following key theorem from [13] about the constructions of weights w(n):

Theorem 5.6 There exists a universal constant C' such that the following holds. Let £ = {L1,...,Ly}
be an admissible set of linear forms such that C' < k < logl/5 x. Assume that the coefficients a;,b; of the
linear forms L;(n) = a;n+b; satisfy the bounds |a;|,|b;| < z®. for all i € [k]. Then there exists a smooth
function F : R¥ — R and quantities Iy, J), depending only on k satisfying

log k
k

I, > (2klogk)™ and J, = I (5.11)

such that for w(n) described above, the following statements hold uniformly for 21/30 < R < z1/9;

e For all n € Z, we have

w(n) < z'/? (5.12)
* 1 BF
Z w(n) = (1 +0 (logl/mx)) m¢(B)k6($)(logR)ka (5.13)
r<n<2zx
o Let L(n) =n. If L € .Z, we have
_ 1 T bl Bk-1
n prime
0] Bksg log R)* 1, 5.14
+0 (S S(L)ulion 1) (5.14)

Let hq, ..., hy be the first k primes larger than k, i.e. h; = pr(x)4+i- In particular, we have that h; < 2k2,
for k large enough. For each i € [k], let L;(n) = n+ h;p. For all p € &, we define ., = {L1,..., Ly}
It is easy to see that %), is an admissible set of linear forms.

We then have that
wp(q) = wz,(q) = #{h; (modq)} ifq#p
so wp are all very close to being equal. It makes to define w(q) = #{h; (mod ¢q)}, for all primes g.

Then
Sp :=H<1—”éq)> (1—;>k= <1+O<I;>>GD($,,) (5.15)

atD
for all integers D, since § < p < 7 and w(q),w,(q) < k, for all primes ¢ and p € Z.

We observe that for ¢ > 2k?, ¢ 1 B, all h; are distinct mod ¢ (since h; < 2k?, for all 7). So if ¢ # p, we
have that w,(q) =k and {j1(L), - -+ Jgw, (@) (Zp)} = {1,2,..., k}.

Also, when ¢ < R, we have that ¢ # p, for all p € & since R < x/4. Hence,
k
De(Lp) N {(da, ... dx) : [[di <R}y ={d e N*: y?(d) = 1,(d,WB) = 1,d < R}
i=1

is independent of p. Hence, using (5.10), we get

Gp(L k

ra(2y) =SB,y (1 +0 ()) Ad
6D X

for some \q independent of p, for all integers D.

We define
w(p,n) = L=y (n)we,(n) (5.16)
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We are now ready to apply Theorem 5.6. Recall that we want to estimate ) _,w(p,n). For this
purpose, we define the set £, composed of linear forms L;(n) =n + h;p — 3 |y/, for i € [k]. Clearly £,
is admissible, wer = wy, and &p(Z,) = &p(Z,). Also,

Zw(p,n): Z we,(n) = Z wey(n)

nez —y<n<y y<n<2y

From (5.13) and (5.15), we see that

k
ne”Z 0 17
Let .
ti= 6¢(B)k(log R)* I}, (5.18)

Using (5.7), (5.11), we see that ¢ > 1. Hence
1
Z w(p,n)=(1+0 —0 ) )t (5.19)
nez log T
which gives us (5.1).
Fix ¢ € [k] and ¢ € 2. We want to approximate Zpegz w(p, g — h;p). For this purpose, we define the set
of linear forms fq(i) ={L1,Lo,..., Ly}, where L;(n) =n and L;(n) = q+ (hj — h;)n, for i # j.

We check that .,fq(i) is admissible. Indeed, for any prime s # ¢, the number of solutions mod s to

nH(n + (hj —h;)g) =0 (mod s)

i#]
is #{h; (mod s) : j € [k]} < s since (hq,...,hs) admissible. Hence, similar as before we obtain
that )

&p(LW) = (1 +0 (x>) Sp (5.20)

for all integers D and that _@k(.fq(i)) N{(d1,...,dg) : dy...dp < R} is independent of ¢ and i, so once

again
. k
)\d(fq(l)) = <1 + O <$>> Ad -

Now, since ¢ — h;p € [—y,y], for all ¢ € 2 and i € [k], then

w0 = (140 () Jwzta =) = (140 (£) ) wloa - ).

> wip,q—hip) = <1 +0 <i)> Y wyo(p)

pEP pEP

Hence

We apply (5.14) to get

> wp,g—hip)= (140 — 1 ))e " (log R)*1J £+0 kaG(lo R 11,
o T = g/ )) alog BT RGBT o(B)

where we used (5.20). From our choice of R and (5.11), we see that the second error term can be absorbed
into the first one.

Let
B ¢(B) logR%
B logz I
Then we have that .
tux
—hp)= (1 — ) | == 21
> wp.q—hip) < +0 <log1/10x>> A (5.21)

peP
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6 Proof of large gaps

6.1 Random uniform choice

Recall that . = {p prime : logz <p< 2}, where z = zl08s #/410g> @

We have the random vector a := (as mod s)sc.» where each residue class a, is selected uniformly at
random independently in s. We define the random set

S(@):={ne€eZ:n#a; (mods), forallse .’} (6.1)
which is a subset of Z with density
1
g = H (1 — 8)
ses

Using Mertens’ Theorem, we deduce that

1 101 log3
o L (g) - - 62
logl0 o< p<s P 0g z og xlogs x
Lemma 6.1 Lett <logz and ni,na,...,n; distinct integers such that |n;| < 2%, for all i. Then
. 1 t
P(nl,ng,...,ntES(a): 140 G o
log” x

Proof We note that if ny,nso,...,n; are not distinct modulo some prime s € ., then s divides one of

n; —nj, for some 1 < i < j <t But for each 1 < ¢ < j <t, we have that |n; — n;| < 222, so it can

be divisible by at most O (llooggz i) primes which are at least log'” z. Hence there are o(t? log ) possible

values of s such that nq,...,n; are not distinct residue classes modulo s. Hence the probability that a,
avoids all ny,...,nsis 1 — i except for o(log3 x) values of s, where it is

(=) (o) =02 o)

" 1 o(log® z)
P(nl,ng,...,nt S S(g)) = H (1— ) (1+O (loggz>)

se€S

“(reefim) 7 0o (5))
e <1+0<10g16x)>

Lemma 6.2 With probability 1 — o(1), we have that

Hence

»

xlogy x

20 5(@)| ~ 12| ~ d0eT 52

More precisely, with probability 1 — o(1),

120 S(F)| = (1+0( ! )) 40c 81082

logy log x

Proof Let
X(@)=#(2n8() = leesa) -

qeE2

EX(F) = (1 +0 (10;6;5)) 02|

22

Then, using Lemma 6.1




and

EX(3)? = (1+0( L )) (02| + 022/(]2| - 1)) = (1+0<1 L ))&QE’

log” x og’ T

since | 2| ~ 1021 by the prime number theorem and using our choice of y (2.1). Then the conclusion

follows from Lemma 3.1.

6.2 Weighted choice

Our goal is to construct random variables n,, such that {n, 4+ h;p : i € [k]} N 2(&) large on average.
First, we will apply Theorem 5.2 to guarantee that sets of the form {n + h;p : i € [k]} contain many
primes.

For each p € &,we select a random number m,, € [0,y] with probability proportional to w(p,n):

w(p,n)

P(m, =n) = e (6.3)
: > ez w(p,2)
Informally, the probability is big when many of n + h;p are prime.
First, we notice from (5.12) and (5.19) that for allp e & and n € Z
P(m, =n) < z~2/3 (6.4)

Using (5.19) and (5.21), we note that for all ¢ € 2 and i € [k]:

> P(my, = q—hip) = Zw(nq—hm)%: <1+O(log$10x)>zjl‘/ (6.5)

= = wen 0l

where u ~ log, x.

For each p € &, we define X,,(@) by
X,(d) =P(m, + hip € S(d), for all i € [k])

In light of Lemma 6.1, we expect that X,(@) ~ o*. Indeed, denote #(@) the set of primes p € & such

that )
Xp(ﬁ’):<1+0<( 2 >>0k
log” x

We will see in Lemma 6.3 that | 22(@)| ~ | 22| with probability 1 — o(1).
We define

1 ifn+hjpeS(d), forall j € [k]
0 otherwise.

ZP(Z{a n) = {

We want to define random variable n,, proportional to m,, and conditional on & such that we can assure
n+hip,....,n+hpe (@) if Pn, =n|a =d)#0. If pe P(a), we let

Zy,(d,n)
P =nla=a)="22"P =

(nP n‘a a) Xp(a) (mP n)
Otherwise, if p € 2\ £(@), we let n, = 0. From our choice of X,,(@), we see that this is a well defined
random variable. This is a very similar construction to the choices of €, in the proof of the Theorem

4.2.
First, we prove indeed that |Z(®&)| ~ |Z?| with high probability:

Lemma 6.3 |2(a)| > (1 L ) | 2| with probability 1 — O( L )

~ logz log x
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Proof First, we observe that

)

Il
=M
gac}
=
he}

Il
S
ac}

s
_|_
=
=
E
+

>
=
e

m
=3

o)

using Lemma 6.1. Secondly, we see that

EX,(Z)* =) ( > Z,(@,n1) 2y (@, n2)P(my, = ny)P(my, = m)) P(& = @)

@ \ni,n2

= Z P(m, = ny)P(m, = n2)P(ny + hip,...,n1 + hgp,na + hip, ..., na + hip € S(A))

ni,n2

= <1 + 0 < 1 )> Eo#{my +hip :i€[k],1=1,2}
log® z

From (6.4) and from k < logz, we know that #{ml(,l) +hip :i € [k],l = 1,2} is 2k with probability
1— O (z=%3+°W). Hence

EX,(R)” = (1 +0 (10;%)) o (140 (a712)) = <1 +0 (10;%)) o

Now we are ready to apply Lemma 3.1. We get that

- ak 1
]P’(Xp(a)—ak|2 5 )zO( 5 )
log” x log” x

This means that for each prime p € &, we have that P(p € 2(Q))=1-0 ( L )

log? x

Let
1 ifpe 2(Q);

0 otherwise.

Yp(a)) = {

Then clearly #2 (&) = Zpe 2 Yp(&). Using Markov’s inequality and linearity of expectation, we get

p (19 2@z (21) < e 2P T o (L)
which is what we wanted to prove. |
Let i
C:= oy (6.6)

From (2.1), (6.2) and that u =~ log, z, we deduce that C' ~ 1, where c is the small constant in the
definition of y.

Recall that for fixed @, we let
e(d)={n, +hp:i=1,...,k}

Lemma 6.4 With probability 1 — o(1), we have that

D Plgeey(R)) =C+O0c (12>

ne logs

for all but at most primes in 2N .7 (&).

T
log zlog, «
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Proof We notice that

k
Y Pgce(R)T=7)=> P(n, = q — hip|a = @)
peEP i=1 pe 2 (a)
=<1+O< )) "“Z > Zy(@,q— hip)P(m, = g — hip)
log T =1 pe (@)

since P(q € e,(@)) =01if p ¢ P(@). Hence it will suffice to show that
1
o * Zy( P(m, = q — h; (1+O<>)C 6.7
le hip)P(my, = q — hip) = . (6.7)
i=1 pe 2 ()

with probability 1 — o(1) for all but primes ¢ € 2.

log x log T

We would like to be able to replace the inner sum in (6.7) to p € &. Clearly,

ZZ > Zp(ﬁ,q—hip)lP’(mp:q—hip)ng S Z,(@n)P(m, =n)

q€2 i=1 pe P\ P (T n€Lpe P\2(a)

We note that

E(> D 2 m, =n) | =Y > P(m, =n)P(n+h;p € S(&), for all j € [k])

n peP pEL N

(1 +0 (1.;6;5)) o*| 2| (6.8)

Z]P a=1d) Z Xp(@)

( (logm)) o 2| (6.9)
6.

where we have used Lemma 6.3. Subtracting (6.9) from (6.8) we obtain

and that

&
g
]
=
B
3
\%
I

—_

k
. &
SE(etY X g habm, =) | =0 (20 )

qE2 i=1 pc P\ P ()

From Markov’s inequality, it follows that

k 3
_ - 1 Z|log T
ZP o kz Z Zp(a7q_hip>P(mp:q_th)_l :O(|le m2)20<113>
€2 i=1 pe P\ P(R) ng g ogxlogy
Hence there are at most m primes ¢ € 2 for which
2

_ . 1 1
’“Z > Zp(a,q—hz-p)ﬂ”(mp=q—hip)> sl =

i=1 pe P\ P (B gz log,

Therefore, it is enough to show that, with probability 1 — o(1),

’kZZZ &,q — hip)P(m —q_hip):<1+0(13>>6' (6.10)

Py logs
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for all but at most m primes ¢ € 2N .7(A).

For g € 2,let Y (@) = Zle > pew Zp(@,q—hip)P(my, = g—h;p). Clearly Y, () = 0if ¢ ¢ 2N.7(a).
From (6.5), we have that

k
=3 3" Plg+ (hy — ha)p € F(R) for all j € [k]) Bl = g — hep)
i=1peP

1 x
=140 | —+— Fu—
(10 (o)) o

Z Z]P’ (q+ (hj — hypr € F(R) for j € [k],1 =1,2)P(my,, =g — hy,p1)P(my,, =q— hi,p2)

P1,P2E€ P 11,12

and

We note that #{q + (h; — hiy,p) : j € [k],l = 1,2} =2k — 1 unless p; = po, since h; < z/4, for all i. We
use again (6.4) to see that the terms with p; = ps have negligible contribution. Hence we obtain

= 1 ’
2@ = (10 () ) 7 ()
2

We know from Lemma 6.1 that P(g € S(@) = ( +0 (log )), hence

E(Y,(2)lq € 5(3)) = (1 L0 (@)) Al

E(Y,(X)’q € S(F)) = <1 +0 (logéox>> (Ok_lulz/f

Therefore, using Lemma 3.1, we get that

"

1 x
E § Y, ()| =E EYE{ =(1+0 oFu—|2
. Yal < <log20x)) 4y| |
geE2NS(A)

q€2 2

o) 1 ok—1(, T ’
E OZ‘»Y;I(a) <1+O(log§0x o U 12|

qe2NS(a)

and

u T 1 uwuzx

—k —
o "Y,(a)———| > -
q( ) ody| — logggja4y

45 <

~ logSz

Hence

and

We obtain that

N 1 1
Pl Y Yq(a)fakfluf > — |g\aku4ﬁ <
e (D) Y logs Y logy
In conclusion, with probability 1 — —%—, the number of ¢ € 2N S(&) such that o=*Y, (&) > loglg s oy
2

is at most

2
0(”'3'>-0(9” )
logs log z log; =

using (6.2) and (2.1). |
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6.3 Applying the covering lemma

Let’s summarise what we have achieved so far. For each @ in the range of &, we have constructed
random integers n, and random subsets e,(@) = {n, + h;p : i € [k]} N 2(d). From Lemma 6.4, we
know that that with probability 1 — o(1) in @&,

> P(geey(R)) =C+0< (log12x> (6.11)

peEP

for all but at most primes in 2N .7(A).

_xr
log zlog, =

From Lemma 6.2, we know that with probability 1 — o(1), we have that

9(3)|:|905(3)|=<1+0< L )>4ocxlog2x (6.12)

logy log x

From now on, fix @ in the range of @ such that (6.11) and (6.12) both hold.
Forallge 2, pe Z:

k k
P(gee,(@)|a =7a)= ZIP’(np =q—hip) <ok ZIP’(mp = q—hip) <z3/° (6.13)

i=1 i=1

for z large enough, where we used (6.4). Also, for distinct integers q1,¢2 € 2, if 1,92 € €,(@), then
plgr — q2. But g1 — g2 < xlogx, so the difference is divisible by at most on prime py € &. Hence

3" PBlgr, g2 € €,(@)) = P(a1,02 € e (@) <272 . (6.14)
pEP

Note that we satisfy all the conditions of Theorem 2.4 stated in the first section. Now we are ready to
apply our hypergraph covering Lemma 4.3. Set V = 2(@), [ = 2, e; = e,(a), r(z) = k = (logz)/°,
f(z) =logyz, 6 = x=/20, Then we see that all the conditions in Lemma 4.3 are satisfied. We conclude
there exist random variables e}, (@) whose support is contained in the support of e, (@) together with

such that 1
N T
|2(a)| <

# {q €2(ad) : q¢ e;(ﬁ’), for all p € @} ~

logy 6logx

with probability 1 —o(1). But e, (@) = {n}, + hip: 1 <i < k} N2(@) or () for some random integers n,
with the same support as n,. Hence

{¢e2(d) : ¢#mn, (modp)forallpe #} C{qe 2(aq) : q¢e,(d), forallpec 7}
Now just take n, in the range of nj, such that

T

) < .
{ge 2(aQ): q#n, (modp)forallpeﬂ}_6logx

This completes the proof, since after using all primes less than x/2 in our sieving process, we are left

with at most =;Z— which can be cleared using primes in [z/2, x].
g
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