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1 Introduction

Let pn denote the n-th prime, and we define

G(X) := max
pn+1≤X

(pn+1 − pn)

Our goal is to find a lower bound for G(X) as good as possible. First, we note that from the prime
number theorem we obtain

G(X) ≥ (1 + o(1)) logX

since the average gap between primes less than X is ∼ logX. The first significant improvement was
achieved by Westzynthius [16] in 1931, who showed that the largest gap between consecutve can be an
arbitrarily large constant of the average gap, i.e.

lim
X→∞

G(X)

logX
=∞ .

In 1936, Erdős and Rankin [15] showed that

G(X) ≥ (c+ o(1))
logX log2X log4X

(log3X)2

with the constant c = 1/3. As it is standard in the subject, we denote log2 x = log log x, log3 x =
log log log x and so on. During the following years, there were many improvements for the constant c. A
significant breakthrough occurred in 2014, when Ford, Green, Konyagin and Tao [5] and independently
Maynard [14] proved that c could be taken arbitrarily large. This asked a long standing conjecture of
Erdős. After that, the 5 authors joined forces and obtained the following improvement [6]:

Theorem 1.1 For X large enough,

G(X)� logX log2X log4X

log3X
(1.1)

It is believed that the result above is the best obtainable with current methods.

We have the following conjectures regarding G(X). Using a basic probabilistic model of primes, Cramer
conjectured that

lim sup
X→∞

G(X)

(logX)2
= 1 .

Using a refinement of Cramer’s model, Granville [8] conjectured that in fact

lim sup
X→∞

G(X)

(logX)2
≥ 2e−γ .

The best unconditional upper bound for G(X) is G(X) � X0.525 by Baker, Harman and Pintz [1].
Assuming the Riemann Hypothesis, the best known upper bound is G(X) � X1/2 logX. We remark
that there is a lot of room for improvement in both the upper bounds and the lower bounds.

The goal of this project is to provide a clear exposition of the proof of Theorem 1.1. There are two key
ingredients in the proof. Firstly, we need an efficient hypergraph covering theorem, on which we will
concentrate in Section 4. Secondly, we need a uniform version of the multidimensional sieve approach,
which was developed in [13]. This process will be described in Section 5. We will describe our plan of
attack in Section 2, whilst everything will carefully be put together in Section 6.

2 Heuristics and outline of the proof

All works on lower bounds of G(X) have the same starting point. We want to rephrase our problem such
that it becomes a problem about sieving an interval with residue classes modulo small primes.
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Definition 2.1 Let x be a positive integer. We define y(x) to be the largest integer y such that one may
select one residue class (ap mod p), for each p ≤ x, which ”sieve out” the interval [y] = {1, 2, . . . , y}.

Lemma 2.2 Let P (x) =
∏
p≤x p. Then

G(P (x) + x+ y(x)) ≥ y(x) .

Proof Select residue classes (ap mod p) for p ≤ x, which cover [y]. Using the Chinese Remainder
theorem, we find m with x < m ≤ x + P (x) such that m ≡ −ap (mod p), for all p ≤ x. Then, for
1 ≤ t ≤ y, there exists some p such that t ≡ ap (mod p), and hence m + t ≡ −ap + ap ≡ 0 (mod p).
Therefore p|m+ t and m+ t > x ≥ p, hence m+ t composite, for 1 ≤ t ≤ y, which gives us y consecutive
composite numbers.

Remark Our function y(x) is very similar to the Jacobsthal function j(x). If x is a positive integer,
then j(x) is the maximal gap between numbers coprime with x. Similar as in the proof of Lemma 2.2,
using the Chinese remainder theorem we see that

y(x) = j(P (x)) .

From the prime number theorem, we know that P (x) = exp((1 + o(1))x). Since y(x) = eo(1)x, an
immediate consequence of Lemma 2.2 is that

G(x) ≥ y((1 + o(1)) log x)

Hence, our goal is that, given an integer x, to find y as large as possible such that we cover [y] with
residue classes modulo primes less than x. Hence, in order to prove Theorem 1.1, we can take

y := cx
log x log3 x

log2 x
. (2.1)

where c is a small fixed positive constant.

Our goal is to cover [y] by residue classes (ap mod p), for p ≤ x. We fix a number z we select later. We
select our residue classes (ap mod p) in 4 steps:

1. ap = 0 for p ∈ [2, log10 x] ∪ (z, x/4]

2. Random uniform choice for ap, p ∈ (log10 x, z]

3. Strategic choice conditional on step 2 for p ∈ (x/4, x/2]

4. Use ap for each x/2 < p ≤ x to cover each one remaining element.

Let’s first discuss the final step, which is the simplest. Suppose that after the first three steps the number
of survivors left in [y] is less than the number of primes considered in step 4. Then one can finish off by
using each prime in step 4 to remove one of the surviving elements by appropriate choice of (ap mod p),
for x/2 < p ≤ x. By the prime number theorem, it will be enough if we can show that steps 1-3 leave at
most x/(3 log x) numbers unsieved.

Now we look at the first step. The elements left uncovered are a subset of the z-smooth numbers (which
are few for appropriate z) and primes greater than x/4, since (x/4) log10 x > y. We expect to be left
with ≈ y/ log y ≈ y/ log x numbers uncovered. This is much better than the typical choice,

y
∏

2≤p≤log10 x

(
1− 1

p

) ∏
z<p≤x/4

(
1− 1

p

)
≈ y log z

log2 x log x

if z is large enough. We want to choose z as large as possible such that Ψ(y, z) = o(x/ log x) (so that
they can be covered in the final step). Ψ(y, z) denotes the number of z-smooth numbers less than y. For
this purpose, we use the following lemma to find an upper bound for z-smooth numbers:

Lemma 2.3 Let u := log y
log z and assume 3 log u < log z. Then we can bound the number of z-smooth

numbers in [y] by
Ψ(y, z)� e−u log u+uy log z .
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Proof Let 0 < σ < 1 be a quantity to be optimised later. We see that (y/n)σ ≥ 1 for all n ≤ y and
(y/n)σ > 0, for all n > y. Let P (n) denote the largest prime factor of n. Then

Ψ(y, z) =
∑

1≤n≤y
P (n)≤z

1 ≤
∑
n≥1

P (n)≤z

( y
n

)σ
= yσ

∑
n≥1

P (n)≤z

1

nσ
= yσ

∏
p≤z

(
1− 1

pσ

)−1

Denote

ζ(σ, z) =
∏
p≤z

(
1− 1

pσ

)−1
We choose

σ = 1− u log u

log y
= 1− log u

log z
>

1

2
(2.2)

Hence

log ζ(σ, s) =
∑
p≤z

1

pσ
+O(1)

Now ∑
p≤z

1

pσ
=
∑
p≤z

(
1

pσ
− 1

p

)
+ log log z +O(1)

using Mertens’ theorem. So we are left with evaluating the sum on the right hand side.

∑
p≤z

(
1

pσ
− 1

p

)
=
∑
p≤z

(
p1−σ − 1

p

)
=
∑
p≤z

exp
(

log p log u
log z

)
− 1

p


using (2.2). Next, we use the convexity inequality

exp(ct)− 1 ≤ (exp(c)− 1)t

which holds for c > 0 and 0 ≤ t ≤ 1. We apply with c = log u and t = log p/ log z to obtain that∑
p≤z

(
1

pσ
− 1

p

)
≤ u

log z

∑
p≤z

log p

p
=

u

log z
(log z +O(1)) = u+O(1)

where we have used Mertens’ theorem again. Putting everything together we obtain

log ζ(σ, z) ≤ log log z + u+O(1)

Hence
Ψ(y, z)� e−u log u+uy log z

Remark In fact, it is known that in the range log3 y ≤ z ≤ y, we have that

Ψ(y, z) ∼ e−u log u+O(u log log(3u))y

which is a theorem of de Bruijn [3]. However, this stronger asymptotic behaviour doesn’t improve our
bounds and the lemma above will suffice.

Since cx ≤ y ≤ cx log x, a very efficient choice of z is

z := xlog3 x/4 log2 x (2.3)

so that u ∼ 4 log2 x
log3 x

and u log u ∼ 4 log2 x. Applying Lemma 2.3 we obtain

Ψ(y, z)� e−u log u+uy log z � y

log4+o(1) x
log x

log3 x

log2 x
= o

(
x

log x

)
as desired.
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Hence essentially we are left with

Q := {p prime : x/4 < p ≤ y}

which we want to cover in steps 2 and 3 up to O(x/ log x) survivors.

For step 2, we choose (ap mod p) uniform at random, for each prime log10 x < p ≤ z. Denote

S := {p prime : log10 x < p ≤ z} (2.4)

the primes used in step 2 and
P = {p prime : x/4 < p ≤ x/2} (2.5)

the primes which we use in step 3.

We take residue classes #»a = (as mod s)s∈S chosen with equal probability and we define the respective
random variable #»a . Let

S( #»a ) = {n ∈ Z : n 6≡ as (mod s) for all s ∈ S }

and let
Q( #»a ) := Q ∩ S( #»a ) (2.6)

the elements left unsieved after step 2. We expect that step 2 will sparsify Q by a factor of

σ :=
∏

log10 x<p≤z

(
1− 1

p

)
∼ 10 log2 x

log z
= 40

log2
2 x

log x log3 x

Indeed, we will see that, with high probability,

|Q( #»a )| ∼ σ y

log y
∼ 40c

x log2 x

log x

Note that if we had σ y
log y �

x
log x , we would be finished by having each prime greater than x/4 to cover

one surviving element (same as described in step 4). This is actually the argument of Erdős and Rankin
which gives a value of y smaller by an order of log2 x. Hence we would like that the average number of
survivors sieved by primes in step 3 is about log2 x.

We return to our problem. We want to choose (rp mod p) for p ∈P such that

• The sets Rp := {n ∈ Q( #»a ) : n ≡ rp (mod p)} are large on average, for all p ∈P

•
⋃
p∈P Rp covers most of Q( #»a ) efficiently (little overlap)

Sets of the type Rp are hard to describe and to work with. Instead, we fix an admissible k-tuple
1 ≤ h1 < · · · < hk � k2, where k will be determined later. For example, let h1, . . . , hk be the first k
primes larger than k, i.e. hi = pπ(k)+i. We want to work with the sets of the form

ep(n,
#»a ) := {n+ hip : 1 ≤ i ≤ k} ∩Q( #»a )

For each #»a , we want to construct random variables (np(
#»a ))p∈P and corresponding random sets

ep(
#»a ) := {np + hip : 1 ≤ i ≤ k} ∩Q( #»a )

such that the sets ep(
#»a ) are large on average and have little overlap. The random variables np(

#»a ) (and
hence also ep(

#»a )) will be defined depending on a fixed #»a in the range of #»a . So when we work with np,
we consider #»a fixed. In order to construct (np)(

#»a ), we will use sieve weights methods which appeared
firstly in [12] and then further developed in [13], [2] and [14].

Heuristically, we will show that |ep( #»a )| � log2 x on average and that they have very little overlap.
Hence, we expect ∣∣∣∣∣∣

⋃
p∈P

ep(
#»a )

∣∣∣∣∣∣� |P| log2 x�
x log2 x

log x
.
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Since we expect |Q( #»a )| ∼ σ y
log x , we are done if

σ
y

log x
≤ cx log2 x

log x

This justifies our choice for y in (2.1).

Indeed, we will prove the following theorem, which tells us that the sets ep(
#»a ) are large enough on

average and ”well-distributed”:

Theorem 2.4 For k ≤ (log x)1/5 and (h1, . . . , hk) admissible set with hi � k2 for all i, we have that
with probability 1− o(1) in #»a , we can construct random variables (np(

#»a ))p∈P such that

• (Sets are large enough) For all p ∈P, we have that

E(|ep( #»a )|)� log k

• (Sparsity) For all p ∈P and q ∈ Q, we have

P(q ∈ ep(
#»a ))� x−3/5

• (Small overlap) For distinct q1, q2 ∈ Q,∑
p∈P

P(q1, q2 ∈ ep(
#»a ))� x−3/5

• (Elements covered more than once in expectation) There exists a universal constant C > 1 such
that for almost all q ∈ Q( #»a ), ∑

p∈P

P(q ∈ ep(
#»a )) ∼ C

Theorem 2.4 informally says that for almost all #»a , we can construct random variables np(
#»a ) such that

the probability of q ∈ Q to belong to ep(
#»a ) is small; intersections between ep(

#»a ) are very small; but
that for almost all q ∈ Q, the sum of probabilities is around the same.

We can think of Q( #»a ) as the vertices of an hypergraph and ep(
#»a ) as random edges in the hypergraph,

i.e. random subsets of Q( #»a ). Heuristically, we know that all edges are small (|ep( #»a )| ≤ k), the degree
of each vertex is small on average, there is very little overlap and that each vertex is covered in average
at least once. We would like to deduce that we find an efficient covering of the vertices. This will be the
subject of Section 4.

3 Probability notational conventions and useful lemmas

We will use boldface symbol (such as X or a) to denote random variables. All the random variables we
consider will be discrete. The range or the support of X are all values X such that P(X = X) > 0. We will
use non-boldface symbols such as X or a to denote elements in the support of random variables.

Let E is an event of non-zero probability. For any event F , we denote

P(F |E) :=
P(F ∧ E)

P(E)

and for any real-valued random variable X,

E(X|E) :=
E(X1E)

P(E)
.

We recall the classical inequalities of Markov in Chebyshev. Let X be a positive real valued random
variable and µ = EX. Then for λ > 0, we have that

P(X ≥ λ) ≤ µ

λ
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and

P(|X− µ| ≥ λ
√

E|X− µ|2) ≤ 1

λ2
.

We will use the following lemma several times:

Lemma 3.1 Let A > 0 and 0 ≤ ε ≤ 1 and X a random variable such that µ = EX = A(1 +O≤ (ε)) and
EX2 = A2(1 +O≤ (ε)). Then, for any δ > ε, we have that

P(|X−A| ≥ δA) ≤ 4ε

(δ − ε)2
.

Proof We first see that we can easily bound the variance

Var(X) = E|X− µ|2 = EX2 − µ2 = A2(1 +O≤ (ε))−A2(1 +O≤
(
2ε+ ε2

)
) ≤ 4εA2

Next, using Chebyshev’s inequality, we obtain

P(|X−A| ≥ δA) ≤ P(|X− µ| ≥ (δ − ε)A) ≤ Var(X)

(δ − ε)2A2
≤ 4ε

(δ − ε)2
.

This lemma is very useful for showing that a random variable is very concentrated once we know estimates
for the first and the second moment. Most of the time, we will have estimates of the form EX =
A(1 + O (e)) and EX2 = A(1 + O (e)), for some very small ε. Then by taking δ = ε1/3, the lemma
provides us with

P
(
|X−A| ≥ ε1/3A

)
= O

(
ε1/3

)
.

We will also need Hoeffding’s inequality:

Lemma 3.2 Let X1, . . . ,Xm be independent random variables such that for all i, EXi = 0 and |Xi| ≤ Bi
with probability 1. Then, for any t > 0,

P (|X1 + · · ·+ Xm| ≥ t) ≤ 2 exp

(
− t2

2
∑m
i=1B

2
i

)

4 Hypergraph covering lemma

4.1 Heuristic discussion

Consider the following general setting. Let (V,Ei)i∈I be a collection of hypergraphs, for some fixed finite
set V and I an index set (so for each i ∈ I, Ei is a collection of subsets of V ). We want to select a
single edge ei ∈ Ei such that

⋃
i∈I ei covers as much of V as possible. We think of V \

⋃
i∈I ei as a sifted

version of V , where each ei represents on step in the sieve.

Let’s first look at the naive method of choosing random edge ei uniformly at random from Ei, indepen-
dently in i. In this case, the probability that a vertex v ∈ V survives the sieve is

P

(
v 6∈

⋃
i∈I

ei

)
=
∏
i∈I

(1− P(v ∈ ei))

In practice, we assume that the probabilities P(v ∈ ei) are small, so 1 − P(v ∈ ei) ≈ exp(−P(v ∈ ei)).
Hence

P

(
v 6∈

⋃
i∈I

ei

)
≈ exp(−dI(v))

where dI(v) =
∑
i∈I P(v ∈ ei). If we have the uniformity assumption dI(v) ≈ d, for all v ∈ V , then

E

∣∣∣∣∣V \⋃
i∈I

ei

∣∣∣∣∣ ≈ |V | exp(−d)
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so we expect that the sifted set V \
⋃
i∈I ei to have density approximately exp(−d).

It turns out we can do better than this. Choosing ei independently is inefficient because it allows for
many overlaps between random edges. From now on we denote the random variable ei to be uniformly at
random from Ei, independently in i. We want an optimised choice of a random variable e′i such that we
can guarantee that e′i are almost always disjoint. We impose the following uniformity conditions:

• (Edges not too large) For all i ∈ I, |ei| ≤ r with probability 1;

• (Sparisity) For all v ∈ V ,
∑
i∈I P(v ∈ ei) ≤ d;

• (Small codegrees) For distinct v1, v2 ∈ V ,
∑
i∈I P(v1, v2 ∈ ei) ≤ δd, for some small δ.

We use the Rödl nibble method. We partition I = I1 ∪ I2 ∪ · · · ∪ Im and proceed in the following
way:

• (Nibble 1) Let I1 ⊂ I small. For i ∈ I1, we choose e′i independently uniformly at random (so
e′i = ei). Let

W1 := V \
⋃
i∈I1

e′i

Then, for each v ∈ V ,

P(v ∈W1) =
∏
i∈I1

(1− P(v ∈ ei)) ≈ exp

(
−
∑
i∈I1

P(v ∈ ei)

)
= exp(−dI1(v)) =: P1(v)

where dI1(v) :=
∑
i∈I1 P(v ∈ ei). Then E|W1| =

∑
v∈V P1(v) and for an small edge e ⊂ V ,

P(e ⊂W1) ≈
∏
v∈e

P1(v) =: P1(e)

since we assume we have small codegrees.

• (Nibble 2) Let I2 ⊂ I \ I1 small. For i ∈ I2, we want to force e′i ⊂W1. If e ∈ Ei such that e ⊂W1,
we choose e′i = e with probability proportional to 1/P1(e). So take

P(e′i = e|W1 = W1) =

{
ci

P1(e)
if e ⊂W1

0 otherwise

for some normalising constant ci, for all i ∈ I2. So e′i is ei conditioned to to the event e′i ⊂W1 and
then reweighted by P1(ei) to compensate for the bias based by the conditioning. Also, they are
jointly independent for i ∈ I2. Note that we have a problem if P1(e) = 0, but this is not expected
behavior and we’ll treat everything carefully later. Let

W2 := W1 \
⋃
i∈I2

e′i .

Fix v ∈ V . Then we will see that

P(v ∈W2) ≈ P(v ∈W1)
∏
i∈I2

(1− P(v ∈ e′i|v ∈W1)) ≈ P1(v) exp

(
−
∑
i∈I2 P(v ∈ ei)

P1(v)

)
=: P2(v)

For a small edge e ⊂ V , we obtain that

P(e ⊂W2) ≈
∏
v∈w

P2(v) =: P2(e) .

• (Nibble m) For i ∈ Im and e ∈ Ei and e ⊂Wm−1, we choose e′i = e with probability proportional
to 1/Pm−1(e). Let Wm = Wm−1 \

⋃
i∈Im e′i and dIm(v) =

∑
i∈Im P(v ∈ ei). Then for all v ∈ V ,

P(v ∈Wm) ≈ Pm−1(v) exp

(
− dIm(v)

Pm−1(v)

)
=: Pm(v) ,

where and for small e ⊂ V , we have

P(e ⊂Wm) ≈
∏
v∈e

Pm(v) =: Pm(e) .
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In view of the algorithm described above, it is useful to have the following definitions:

Definition 4.1 Let (V,Ei)i∈I a collection of hypergraphs and for each i ∈ I, let ei be a random set of
V supported on Ei. Let I = I1 ∪ · · · ∪ Im. For all j ∈ [m] and v ∈ V we define the normalised degrees

dj(v) :=
∑
i∈Ij

P(v ∈ ei) (4.1)

and then we recursively define Pj(v) by setting P0(v) = 1 and

Pj+1(v) = Pj(v) exp

(
−dj+1(v)

Pj(v)

)
. (4.2)

The key idea of the process described above is that for i, j ∈ I, e′i and e′j will always be disjoint, unless
i and j belong to the same nibble. We formalise the process in the following theorem:

Theorem 4.2 Let D, r,A ≥ 1, O < δ, κ ≤ 1/2 and m ≥ 0 an integer. Let V be a finite set. Let I1, . . . Im
be finite index sets, and for each j ∈ [m] and i ∈ Ij, let ei be a random subset of V such that:

• (Edges not too large) With probability 1, for all j ∈ [m] and i ∈ Ij

#ei ≤ r (4.3)

• (Sparsity) For all j ∈ [m], i ∈ Ij and v ∈ V

P(v ∈ ei) ≤
δ

|Ij |1/2
(4.4)

• (Small codegrees) For all j ∈ [m] and distinct v1, v2 ∈ V∑
i∈Ij

P(v1, v2 ∈ ei) ≤ δ (4.5)

• (Degree bounds) For j ∈ [m] and v ∈ V , let dj(v) and Pj(v) be defined as in Definition 4.1. Then,
for j ∈ [m] and v ∈ V , we have

dj(v) ≤ DPj−1(v) (4.6)

and
Pj(v) ≥ κ . (4.7)

• (Smallness bound for δ) There exists a universal constant C0 ≥ 1 such that

δ ≤
(

κA

C0 exp(AD)

)10m+2

(4.8)

Then, for all i ∈ ∪mj=1Ij, we can find random subsets e′i such that the support of e′i is contained in the
support of ei union with the empty set and for all 0 ≤ J ≤ m and e ⊂ V with |e| ≤ A− 2rJ , we have

P

e ⊂ V \ J⋃
j=1

⋃
i∈Ij

e′i

 =
(

1 +O≤

(
δ1/10

J+1
))

PJ(e) (4.9)

where PJ(e) :=
∏
v∈e PJ(v).

The proof will be described in detail in the next section. We now focus on the main application of
it:

Lemma 4.3 Let f(x) such that limx→∞ f(x) =∞. Let I and V be sets with |I| ≤ x and f(x)2 ≤ |V | ≤
x50. Let δ ≤ x−1/50. For each i ∈ I, let ei be a random subset of V such that

• (Edges not too large) With probability 1, for all i ∈ I

#ei ≤ r(x) (4.10)

9



• (Conditions on growth of f(x) and r(x)) We have that

r(x)f(x)3/2 ≤ log x (4.11)

• (Sparsity) For all i ∈ I and v ∈ V
P(v ∈ ei) ≤ δx−1/2 (4.12)

• (Small codegrees) For any two distinct v1, v2 ∈ V ,∑
i∈I

P(v1, v2 ∈ ei) ≤ δ (4.13)

• (Elements covered more than once in expectation) For all but at most o
(
|V |
f(x)

)
elements v ∈ V , we

have ∑
i∈I

P(v ∈ ei) = C +O≤

(
1

f(x)2

)
(4.14)

for some global constant C satisfying 5
4 log 5 ≤ C � 1.

Then, for all i ∈ I we can find random subsets e′i ⊆ V which is either empty or a subset of V which ei
attains with positive probability such that

#{v ∈ V : v 6∈ e′i, for all i ∈ I} ∼ |V |
f(x)

(4.15)

with probability 1− o(1).

Before we proceed with the proof, we would like to discuss why this lemma is very useful. Very informally,
it states that if we have a collection on hypergraphs such that all edges are small, the degrees are on
average small and the codegrees very small, and that if every vertex is covered on average at least once,
we can find a very effective almost covering of V with one edge from each hypergraph. If we compare it
with the naive approach of choosing uniformly independently at random as discussed in the beginning of
the section, we expect that the density of the elements left uncovered is around exp(−C). This method
provides us a density of at most 1/f(x).

We chose to expose this lemma in slightly more generality than in [6] because we have liberty in choosing
our parameters f(x) and r(x) that might be useful in further applications. Sometimes it might be useful
to have larger bound for the size of edges, which means r(x) larger, and sometimes we might want to
guarantee better covering, which means f(x) larger.

We now proceed with the proof of Lemma 4.3 assuming Theorem 4.2.

Proof The number of elements in V that fail (4.14) is o
(
|V |
f(x)

)
, so we may discard these elements from

V and assume (4.14) holds for all v ∈ V (it is easy to see that this does not influence our assumptions
or the conclusion we want to prove).

Let m = b log f(x)log 5 c (so m is the largest integer such that 5m ≤ f(x)). We want to find I1, I2, . . . Im
disjoint subsets of I such that uniformly for all v ∈ V and j ∈ [m]:∑

i∈Ij

P(v ∈ ei) = 51−j log 5 +O

(
1

f(x)2

)
(4.16)

For this purpose, let ti be uniform in [0, 1] and independent for each i ∈ I. Let
#»
t = (ti)i∈I . Since

C ≥ 5
4 log 5, we find disjoint intervals I1, . . .Im in [0, 1] with |Ij | = 51−j log 5

C . We define the random
sets

Ij(
#»
t ) := {i ∈ I : ti ∈ Ij} .

For v ∈ V , j ∈ [m] and i ∈ I we consider the independent random variables

Xv,i,j(
#»
t ) =

{
P(v ∈ ei) if i ∈ Ij(

#»
t )

0 otherwise.
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Then we clearly have that∑
i∈I

EXv,i,j =
∑
i∈I

P(v ∈ ei)P(i ∈ Ij(
#»
t ) = |Ij |

∑
i∈I

P(v ∈ ei) = 51−j log 5 +O≤

(
4/5

f(x)2

)
(4.17)

using (4.14). Since |Xv,i,j | ≤ δx−1/2 by (4.12), we apply Lemma 3.2 to obtain

P

(
|
∑
i∈I

(Xv,i,j(
#»
t )− EXv,i,j(

#»
t )| ≥ 1

f(x)2

)
≤ 2 exp

(
− f(x)−4

2δ2x−1|I|

)
≤ 2 exp

(
− 1

2δ2f(x)4

)
� x−100

since δ ≤ x−1/50 and f(x) ≤ log x. Since |V | ≤ x50 and m ≤ x, there exists a deterministic choice
#»
t of

#»
t such that for all v ∈ V and j ∈ [m], we have

|
∑
i∈I

(Xv,i,j(
#»
t )− EXv,i,j(

#»
t )| ≤ 1

f(x)2
(4.18)

Our choice of
#»
t will give us a deterministic choice for Ij . Putting together (4.17) and (4.18), we obtain∑

i∈I
Xv,i,j(

#»
t ) =

∑
i∈Ij

P(v ∈ ei) = 51−j log 5 +O≤

(
2

f(x)2

)
(4.19)

for all v ∈ V , j ∈ J , which is exactly what we wanted to prove in (4.16).

We are now ready to look at the normalised degrees. Since 5m ≤ f(x), the last equation implies that

dIj (v) = 51−j log 5

(
1 +O≤

(
2

f(x)

))
for all v ∈ V and j ∈ [m]. We prove by induction that

Pj(v) = 5−j(1 +O≤(4j/f(x))) (4.20)

Indeed, it is easy to check for j = 1 and

Pj+1(v) = Pj(v) exp
(
−dIj+1

(v)/Pj(v)
)

= 5−j(1 +O≤(4j/f(x))) exp

(
−5−j log 5(1 +O≤(2/f(x)))

5−j(1 +O≤(4j/f(x)))

)
= 5−(j+1)(1 +O≤(4j/f(x))) exp

(
O≤(2 · 4j/f(x))

)
= 5−(j+1)(1 +O≤(4j+1/f(x)))

as desired. Hence, since j ≤ m ≤ log f(x)/ log 5, if we take ν = 1− log 4
log 5 , we obtain that

Pj(v) = 5−j(1 +O≤(f(x)−ν)) (4.21)

for all v ∈ V and j ∈ [m].

We check that we satisfy all the conditions of Theorem 4.2. Let A = 2rm + 2. We see that (4.11) is
chosen such that (4.8) is satisfied and all other conditions follow easily. Indeed, let κ = 1

2f(x) and D = 1

to see that (4.6) and (4.7) are satisfied. Also

f(x)
log 10
log 5 r(x) log f(x)� log x

since log 10/ log 5 < 3/2 and then (4.8) follows.

Hence, we obtain random variables e′i, for i ∈ ∪mj=1Ij such that

P

v 6∈ m⋃
j=1

⋃
i∈Ij

e′i

 =
(

1 +O≤

(
δ1/10

m+1
))

Pm(v) (4.22)

for all v ∈ V , and

P

v1, v2 6∈ m⋃
j=1

⋃
i∈Ij

e′i

 =
(

1 +O≤

(
δ1/10

m+1
))

Pm(v1)Pm(v2) (4.23)
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for distinct v1, v2 ∈ V . We set e′i = ∅ for i ∈ I \
⋃m
j=1 Ij .

We want to use Lemma 3.1 to approximate #{v ∈ V : v 6∈ e′i, for all i ∈ I}. For this purpose, we define
the random variable

X := #{v ∈ V : v 6∈ e′i, for all i ∈ I} =
∑
v∈V

1v 6∈∪m
j=1∪i∈Ij e

′
i

and we need to approximate EX and EX2. From (4.22) and from the upper bound on δ we see that

EX =
1

f(x)

(
1 +O

(
f(x)−ν

))
|V |

and from (4.23) we obtain that

EX2 =
1

f(x)2
(
1 +O

(
f(x)−ν

))
|V |(|V | − 1) +

1

f(x)2
(
1 +O

(
f(x)−ν

))
|V |

=
1

f(x)2
(
1 +O

(
f(x)−ν

))
|V |2

Using that |V | ≥ f(x)2 we obtain that

P
(∣∣∣∣X− |V |f(x)

∣∣∣∣ ≥ |V |f(x)−1−ν/3
)
� f(x)−ν/3

which implies the conclusion.

4.2 Proof of Theorem 4.2

We proceed by induction on m. There is nothing to prove for m = 0, so suppose m ≥ 1 and that the
conclusion is proved for m− 1. Hence, for i ∈ ∪m−1j=1 Ij we find random variables e′i such that

P

e ⊂ V \ m−1⋃
j=1

⋃
i∈Ij

e′i

 =
(

1 +O≤

(
δ1/10

m
))

Pm−1(e) (4.24)

for all e ⊂ V of cardinality at most A− 2r(m− 1). Denote the random variable

W = V \
m−1⋃
j=1

⋃
i∈Ij

e′i .

Our goal is to find random variables e′i, for i ∈ Im, whose support is contained in that of ei together
with the empty set such that

P

(
e ⊂W \

⋃
i∈Im

e′i

)
=
(

1 +O≤

(
δ1/10

m+1
))

Pm(e) (4.25)

for all e ⊂ V with |e| ≤ A− 2rm. Hence we may assume A ≥ 2rm if we want our theorem to have any
meaning.

As discussed earlier, we want to choose e′i with probability proportional to 1/Pm−1(e) conditional on
ei ⊂W. For this purpose, for each W in the essential range of W and i ∈ Im, we define the normalisation
factor

Xi(W ) =
∑
ei⊂W

P(ei = ei)

Pm−1(ei)
(4.26)

We want to avoid the cases where Xi(W ) = 0. In fact, we will show that Xi(W) is very close to 1 with
high probability. We define

Fi(W ) =

{
1 if |Xi(W )− 1| ≤ δ

1
3×10m

0 otherwise.
(4.27)
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Now we are ready to state the definition of e′i. If Fi(W ) = 0, we let e′i = ∅, or in other words,
P(e′i = ∅|W = W ) = 1. Otherwise, if Fi(W ) = 1, for each ei ∈ Ei we define

P(e′i = ei|W = W ) =

{
P(ei=ei)

Xi(W )Pm−1(ei)
if ei ⊂W

0 otherwise.
(4.28)

We check this is a well defined probability distribution:∑
ei∈Ei

P(ei = ei|W = W ) =
1

Xi(W )

∑
ei∈W

P(ei = ei)

Pm−1(ei)
= 1

In order to make the proof easier to follow, we split it into several lemmas. First we check that Fi(W ) = 1
with high probability:

Lemma 4.4
P(Fi(W) = 1) = E(Fi(W)) = 1−O

(
δ

1
3×10m

)
.

Proof We see that
P(Fi(W) = 0) = P(|Xi(W)− 1| ≥ δ

1
3×10m )

and this suggests using Lemma 3.1. So we want to provide good approximations for EXi(W) and
E(Xi(W)2). We begin with the first one:

EXi(W) =
∑
W

∑
ei⊂W

P(ei = ei)

Pm−1(ei)
P(W = W ) =

∑
ei

P(ei = ei)

Pm−1(ei)
P(ei ⊂W)

=
∑
ei

P(ei = ei)

Pm−1(ei)

(
1 +O≤

(
δ1/10

m
))

Pm−1(ei) =
(

1 +O≤

(
δ1/10

m
))

using (4.24). Now we compute the second moment:

E(Xi(W)2) =
∑
W

∑
ei,fi⊂W

P(ei = ei)

Pm−1(ei)

P(ei = fi)

Pm−1(fi)
P(W = W ) =

∑
ei,fi

P(ei = ei)

Pm−1(ei)

P(ei = fi)

Pm−1(fi)
P(ei ∪ fi ⊂W)

=
(

1 +O≤

(
δ1/10

m
))∑

ei,fi

P(ei = ei)P(ei = fi)
1

Pm−1(ei ∩ fi)

using again (4.24) and that Pm−1(ei)Pm−1(fi) = Pm−1(ei∪fi)Pm−1(ei∩fi). We note that Pm−1(ei∩fi)
is 1 if ei ∩ fi = ∅ and it is at least κr otherwise, using (4.7). Hence∑
ei,fi

P(ei = ei)P(ei = fi)
1

Pm−1(ei ∩ fi)
= 1 +

∑
ei∩fi 6=∅

P(ei = ei)P(ei = fi)

(
1

Pm−1(ei ∩ fi)
− 1

)

= 1 +O

(
k−r

∑
ei

P(ei = ei)
∑
v∈ei

P(v ∈ ei)

)
= 1 +O

(
rδk−r

)
where we used (4.4) for the last equality. But it is easy to see from (4.8) that

rk−r ≤ Ak−A ≤ δ−
1

10m+2

which clearly implies rδκ−r ≤ δ 1
10m . Hence

E(Xi(W)2) =
(

1 +O
(
δ1/10

m
))

.

Now just applying Lemma 3.1, we obtain P(|Xi(W)− 1| ≥ δ
1

3×10m )� δ
1

3×10m , as desired.

Fix e ⊂ V with |e| ≤ A− 2rm. Recall that our aim is to prove that (4.25). We note that

P

(
e ⊂W \

⋃
i∈Im

e′i

)
=
∑
W

P

(
e ⊂W \

⋃
i∈Im

e′i|W = W

)
P(W = W )

=
∑
e⊂W

P

(
e ⊂W \

⋃
i∈Im

e′i|W = W

)
P(W = W )
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since P
(
e ⊂W \

⋃
i∈Im e′i|W = W

)
= 0 if e ∩W = ∅. By the induction hypothesis (4.24), we know

that

P(e ⊂W) =
∑
e⊂W

P(W = W ) = Pm−1(e)
(

1 +O≤

(
δ1/10

m
))

.

Hence it is enough to prove that

1

P(e ⊂W)

∑
e⊂W

P

(
e ⊂W \

⋃
i∈Im

e′i|W = W

)
P(W = W ) =

(
1 +O

(
δ

1
9×10m

))
exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
(4.29)

Let Y (W ) = P
(
e ⊂W \

⋃
i∈Im e′i|W = W

)
. Then (4.29) is equivalent to

E(Y (W)|e ⊂W) =
(

1 +O
(
δ

1
9×10m

))
exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
(4.30)

Lemma 4.5 Let W in the essential range of W such that e ⊂W . Then

Y (W ) = P

(
e ⊂W \

⋃
i∈Im

e′i|W = W

)
=
(

1 +O
(
δ1/10

m
))

exp

(
−
∑
i∈Im

∑
v∈e

P(v ∈ e′i|W = W )

)

Proof We observe that, since e′i are jointly independent for each i ∈ Im conditional on the event
W = W :

P

(
e ⊂W \

⋃
i∈Im

e′i|W = W

)
=
∏
i∈Im

(1− P(e ∩ e′i 6= ∅|W = W ))

Of course, we want to approximate the product on the right hand side by an exponential, so we need to
find upper bounds for the probabilities in order to estimate the error terms. Clearly P(e ∩ e′i 6= ∅|W =
W ) = 0 is 0 if Fi(W ) = 0, so now we consider the case Fi(W ) = 1.

P(e ∩ e′i 6= ∅|W = W ) ≤
∑
v∈e

P(v ∈ e′i|W = W ) ≤
∑
v∈e

∑
ei:v∈ei

P(e′i = ei|W = W )

� Aκ−rP(v ∈ ei)� Aκ−rδ|Im|−1/2

where we have used the definition of e′i (4.28), |e| ≤ A and the sparsity assumption (4.4). Hence

1− P(e ∩ e′i 6= ∅|W = W ) = exp (−P(e ∩ e′i 6= ∅|W = W )) +O

(
(Aκ−rδ)2

|Im|

)
Using (4.8), we notice again that A2κ−2r ≤ A2κ−A ≤ δ−

1

10m+2 , and so (Aκ−2rδ)2 ≤ δ1/10m . Hence

∏
i∈Im

(1− P(e ∩ e′i 6= ∅|W = W )) =
(

1 +O
(
δ1/10

m
))

exp

(
−
∑
i∈Im

P(e ∩ e′i 6= ∅|W = W ))

)
(4.31)

Next we see that

P(e ∩ e′i 6= ∅|W = W ) =
∑
v∈e

P(v ∈ e′i|W = W ) +O

 ∑
v,w,∈e
v 6=w

P(v, w ∈ e′i|W = W )

 (4.32)

We estimate the error term:∑
i∈Im

∑
v,w,∈e
v 6=w

P(v, w ∈ e′i|W = W ) =
∑
i∈Im

∑
v,w,∈e
v 6=w

∑
ei:v,w∈ei

P(e′i = ei|W = W )

�
∑
i∈Im

∑
v,w,∈e
v 6=w

κ−r P(v, w ∈ ei)� A2κ−rδ
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using the condition (4.5). Similarly as before, A2κ−rδ ≤ δ1/10
m

, so putting together (4.31) and (4.32)
we obtain

∏
i∈Im

(1− P(e ∩ e′i 6= ∅|W = W )) =
(

1 +O
(
δ1/10

m
))

exp

(
−
∑
i∈Im

∑
v∈e

P(v ∈ e′i|W = W ) +O
(
δ1/10

m
))

=
(

1 +O
(
δ1/10

m
))

exp

(
−
∑
i∈Im

∑
v∈e

P(v ∈ e′i|W = W )

)

Lemma 4.6 Conditionally on e ⊂W, we have that∑
i∈Im

P(v ∈ e′i|W) =
∑
i∈Im

∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)
+O

(
δ

1
8×10m

)

with probability 1−O
(
δ

1
8×10m

)
.

Proof We note that P(v ∈ e′i|W = W ) = Fi(W )P(v ∈ e′i|W = W ). Hence

P(v ∈ e′i|W = W ) =
Fi(W )

Xi(W )

∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)
=
(

1 +O
(

1− Fi(W ) + δ
1

3×10m

)) ∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)

We use this approximation because, from Lemma 4.4, we expect Fi(W ) = 1 most of the time. Hence∑
i∈Im

P(v ∈ e′i|W = W ) =
∑
i∈Im

∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)
+
∑
i∈Im

O
(

1− Fi(W ) + δ
1

3×10m

) ∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)

We aim to find an bound for the error term. From Lemma 4.4, we know that E(Fi(W)) = 1−O
(
δ

1
3×10m

)
,

which implies that

E(Fi(W)|e ⊂W) =
1

P(e ⊂W)

∑
e⊂W

Fi(W )P(W = W ) =
P(e ⊂W)−O

(
δ

1
3×10m

)
P(e ⊂W)

= 1−
O
(
δ

1
3×10m

)
Pm−1(e)

Let

Z(W ) :=
∑
i∈Im

(
1− Fi(W ) + δ

1
3×10m

) ∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)

Then clearly

Z(W )� κ−r
∑
i∈Im

(
1− Fi(W ) + δ

1
3×10m

)
P(v ∈ ei)

hence

E(Z(W)|e ⊂W)� κ−r

Pm−1(e)
δ

1
3×10m dIm(v)� κ−2rδ

1
3×10m dIm(v)� κ−Aδ

1
3×10m � δ

1
4×10m

We now use Markov’s inequality to obtain that

P(Z(W) ≥ δ
1

8×10m )� δ(
1

4×10m−
1

8×10m ) = δ
1

8×10m .

Lemma 4.7 Conditionally on e ⊂W, we have∑
i∈Im

∑
ei:v∈ei

1ei⊂W
P(ei = ei)

Pm−1(ei)
=

dIm(v)

Pm−1(v)
+O

(
δ

1
3×10m

)

with probability 1−O
(
δ

1
3×10m

)
.
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Proof Let

X(W) =
∑
i∈Im

∑
ei:v∈ei

1ei⊂W
P(ei = ei)

Pm−1(ei)
.

We would like to use once again Lemma 3.1, so we want to approximate E(X(W)|e ⊂ W) and
E(X(W)2|e ⊂W). We begin with the first one:

E(X(W)|e ⊂W) =
1

P(e ⊂W)

∑
W :e⊂W

∑
i∈Im

∑
ei:v∈ei

1ei⊂W
P(ei = ei)

Pm−1(ei)
P(W = W )

=
∑
i∈Im

∑
ei:v∈ei

P(ei = ei)

Pm−1(ei)

P(e ∪ ei ⊂W)

P(e ⊂W)

=
(

1 +O
(
δ1/10

m
)) ∑

i∈Im

∑
ei:v∈ei

P(ei = ei)

Pm−1(ei)

Pm−1(e ∪ ei)
Pm−1(e)

using the induction hypothesis (4.24). We proceed similarly to the proof of Lemma 4.4. Since v ∈ e∩ ei,
we have that

Pm−1(e ∪ ei)
Pm−1(ei)Pm−1(e)

=
1

Pm−1(v)Pm−1(ei ∩ e \ {v})
Now, Pm−1(ei ∩ e \ {v}) is 1 if ei and e \ {v} are disjoint and at least κr otherwise. Hence

∑
i∈Im

∑
ei:v∈ei

P(ei = ei)

Pm−1(ei)

Pm−1(e ∪ ei)
Pm−1(e)

=
∑
i∈Im

P(v ∈ ei)

Pm−1(v)
+O

κ−r ∑
i∈Im

∑
w∈e\{v}

P(v, w ∈ ei)

Pm−1(v)


=

dIm(v)

Pm−1(v)
+O

(
κ−(r+1)δA

)
=

dIm(v)

Pm−1(v)
+O

(
δ1/10

m
)

Hence, we have that

E(X(W)|e ⊂W) =
(

1 +O
(
δ1/10

m
)) dIm(v)

Pm−1(v)
(4.33)

We now study E(X(W)2|e ⊂W):

E(X(W)2|e ⊂W) =
1

P(e ⊂W)

∑
W :e⊂W

∑
i,j∈Im

∑
ei:v∈ei

∑
fj :v∈fj

1ei⊂W 1fj⊂W
P(ei = ei)

Pm−1(ei)

P(ej = fj)

Pm−1(fj)
P(W = W )

=
(

1 +O
(
δ1/10

m
)) ∑

i,j∈Im

∑
ei:v∈ei

∑
fj :v∈fj

P(ei = ei)

Pm−1(ei)

P(ej = fj)

Pm−1(fj)

Pm−1(e ∪ ei ∪ fj)
Pm−1(e)

We note that

Y (ei, fj) :=
Pm−1(v)2Pm−1(e ∪ ei ∪ fj)
Pm−1(e)Pm−1(ei)Pm−1(fj)

is 1 when e \ {v}, ei \ {v} and fj \ {v} are pairwise disjoint and otherwise is at most κ−2r. Hence

Y (ei, fj) = 1 +O

κ−2r
 ∑
w∈e\{v}

(1w∈ei + 1w∈fj ) +
∑

w∈ei\{v}

1w∈fj


We note that ∑

i,j∈Im

∑
w∈e\{v}

P(v, w ∈ ei, v ∈ ej) ≤ dIm(v)
∑

w∈e\{v}

∑
i∈Im

P(v, w ∈ ei) ≤ DAδ

using (4.6) and (4.5), since dIm(v) ≤ DPm−1(v) ≤ D. Similarly,∑
i,j∈Im

∑
w∈e\{v}

P(v ∈ ei, v, w ∈ ej) ≤ DAδ

and ∑
i,j∈Im

∑
ei:v∈ei

∑
fj :v∈fj

P(ei = ei)
∑

w∈ei\{v}

P(v, w ∈ ej) ≤ rdIm(v)δ ≤ Drδ
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Using again the smallness condition on δ (4.8), we know that k−2rDAδ ≤ δ1/10m , hence

E(X(W)2|e ⊂W) =

(
dIm(v)

Pm−1(v)

)2

+O
(
δ1/10

m
)
.

and the conclusion follows as an easy application of Lemma 3.1.

Now we are ready to put everything together and complete the proof of Theorem 4.2. Recall from (4.30),
that it is enough to prove

E(Y (W)|e ⊂W) =
(

1 +O
(
δ

1
9×10m

))
exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
where Y (W ) = P

(
e ⊂W \

⋃
i∈Im e′i|W = W

)
. From Lemma 4.5, we know that

Y (W ) =
(

1 +O
(
δ1/10

m
))

exp

(
−
∑
i∈Im

∑
v∈e

P(v ∈ e′i|W = W )

)
Next we use Lemma 4.6 and that 0 ≤ Y (W ) ≤ 1, for all W to obtain

E(Y (W)|e ⊂W) =
(

1 +O
(
δ1/10

m
))

exp

−∑
v∈e

 ∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)
+O

(
δ

1
8×10m

)
+O

(
δ

1
8×10m

)

=
(

1 +O
(
δ1/10

m
))

exp

−∑
v∈e

 ∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)

+O
(
δ

1
9×10m

)+O
(
δ

1
8×10m

)

=
(

1 +O
(
δ

1
9×10m

))
exp

−∑
v∈e

∑
ei:v∈ei
ei⊂W

P(ei = ei)

Pm−1(ei)

+O
(
δ

1
9×10m

)

where we used that |e| ≤ A ≤ δ−1/10m+2

. Finally, using Lemma 4.7, we obtain

E(Y (W)|e ⊂W) =
(

1 +O
(
δ

1
9×10m

))
exp

(
−
∑
v∈e

(
dIm(v)

Pm−1(v)
+O

(
δ

1
3×10m

)))
+O

(
δ

1
9×10m

)
=
(

1 +O
(
δ

1
9×10m

))
exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
+O

(
δ

1
9×10m

)
.

The conclusion follows from the fact that

exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
≥ exp(−AD) ≥ δ

1

10m+2

using once again (4.8) and (4.6). This concludes (4.30) and hence the proof of Theorem 4.2.

5 Sieve estimates

5.1 Introduction

Consider the following problem. We fix an admissible k-tuple (h1, . . . , hk) and we would like to show
there exists infinitely many n such that many of n+ hi are prime. We recall the key idea from [12]. We
want to construct sieve weights w(n) which are large when many of n+hi are prime and small otherwise.
Then we look at sums of the form

S1(x) =
∑

x≤n≤2x

w(n)

S2(x) =
∑

x≤n≤2x

k∑
i=1

1(n+ hi prime)w(n)

17



If we can show that S2(x) ≥ uS1(x), then there exist some values of n ∈ [x, 2x] such that at least u of
n+ hi are prime.

Theorem 5.1 (Maynard) For k ≤ (log x)1/5 and admissible k-tuple (h1, . . . , hk) with hi � k2 for all
i, there exist weights w(n) such that S2(n)� log k S1(n).

Recall from the discussion from the first section that we want to construct sets of the form {n + hip :
1 ≤ i ≤ k} that contain many primes on average, for p ∈ P. Hence in our case, we want to construct
sieve weights w(p, n) such that w(p, n) is large when many of n+ hip are primes, for p ∈P. Indeed, we
will deduce the following theorem:

Theorem 5.2 (Ford, Green, Konyagin, Maynard, Tao) Let k ≤ (log x)1/5 and (h1, . . . , hk) an ad-
missible k-tuple contained in [2k2]. Then we can find weights w : P× (Z∩ [−y, y])→ R+ such that there
exists a quantity t and u ≈ log k with the following properties:

(a) Uniformly for every p ∈P, ∑
|n|≤y

w(p, n) ∼ ty (5.1)

(b) Uniformly for every q ∈ Q, ∑
p∈P

k∑
i=1

w(p, q − hip) ∼ t|P|u (5.2)

(c) Uniformly for every p ∈P and |n| ≤ y,

w(p, n) = O
(
x1/3

)
(5.3)

We note that (5.1) is similar to a sum of type S1 and that (5.2) is similar to a sum of type S2. We will
see in Section 6 how this sieve weights w(p, n) help us to construct sets of the form {n+hip : 1 ≤ i ≤ k}
with the required properties. The focus of this section will be showing how to prove Theorem 5.2.

We begin by recalling the classical Bombieri-Vinogradov theorem, which tells us that the average error
term in the prime number theorem for arithmetic progressions is small.

Theorem 5.3 (Bombieri-Vinogradov) Let A > 0 and x1/2(log x)−A ≤ Q ≤ x1/2. Then∑
q≤Q

max
z≤x

max
a:(a,q)=1

∣∣∣∣π(z; q, a)− π(z)

φ(q)

∣∣∣∣�A x
1/2Q(log x)5

We want to obtain a better upper bound. We need to take into consideration possible Siegel zeros.
From the Landau-Page page theorem [4, Chapter 14], we know that there exists a constant c such that
for Q ≥ 100, there exists at most one primitive character χ of modulus at most Q with a zero in the
region

1− σ ≤ c

log(Q(1 + |t|))

Taking this into account, we have the following modified version of Bombieri-Vinogradov [4, Chapter
28]:

Theorem 5.4 There exists a universal constant c > 0 and B = B(x) ≤ x which is either 1 or a prime
such that ∑

q≤x1/3

(q,B)=1

max
z≤x

max
a:(a,q)=1

∣∣∣∣π(z; q, a)− π(z)

φ(q)

∣∣∣∣� x exp
(
−c
√

log x
)

5.2 Construction of sieve weights

Definition 5.5 A linear form is a function L : Z→ Z of the form L(n) = an+b, with integer coefficients
a, b and a 6= 0.
A finite set L = {L1, . . . Lk} of linear form is admissible if

∏k
i=1 Li(n) has no fixed prime divisor, i.e.

for every prime, there exists an integer np such that
∏k
i=1 Li(np) not divisible by p.
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Fix L an admissible set of linear forms. We define the multiplicative functions ω = ωL and ϕ = ϕL

and the series SD(L ), for an integer D by

ω(p) =

{
#{1 ≤ n ≤ p :

∏k
i=1 Li(n) ≡ 0 mod p}, p - B

0, p|B
(5.4)

ϕ(d) =
∏
p|d

(p− ω(p)) (5.5)

SD(L ) =
∏
p-D

(
1− ω(p)

p

)(
1− 1

p

)−k
(5.6)

Since L is admissible, we have ω(p) < p, for all primes p, hence ϕ(n) > 0 and SD(L ) > 0 for all integers

D. Also, it is not hard to see that ωp = k for all p -
∏k
i=1 ai

∏
i6=j(aibj − biaj). This implies that indeed

the product in the definition of SD(L ) is convergent. We denote S1(L ) =: S(L ).

Since ω(p) ≤ min(k, p− 1), we observe that

SD(L ) =
∏
p-D

(
1− ω(p)

p

)(
1− 1

p

)−k
≥

∏
p≤k,p-D

1

p

∏
p>k,p-D

(
1− k

p

)(
1− 1

p

)−k
≥
∏
p≤k

1

p

∏
p>k

(
1 +O

(
k2

p2

))
≥ exp(−Ck) (5.7)

for some universal constant C. In the products above, we dropped the restriction p - D since all the
terms are less than 1.

Let B as in Theorem 5.4 and k = (log x)1/5. Let W :=
∏
p≤2k2,p-B p. Given a prime p - WB, let

1 ≤ rp,1(L ) < · · · < rp,ω(p)(L ) be the ω(p) residue classes for each
∏k
i=1 Li(n) vanishes modulo p. For

such a prime p, for each 1 ≤ a ≤ ω(p), let jp,a = jp,a(L ) the smallest element of [k] such that

Ljp,a(rp,a) ≡ 0 (mod p) .

For any L ∈ L , there is at most one residue class for which L vanishes mod p. Thus, jp,1, . . . , jp,ω(p)
must be distinct.

We construct sieve weights w(n) = wL (n) such that w(n) = 0 if (
∏k
i=1 Li(n),W ) 6= 1. This condition

guarantees that if w(n) 6= 0, then all Li(n) do not have small prime factors. Otherwise, we let

w(n) =

 ∑
di|Li(n)

λd1,...,dk

2

=

 ∑
di|Li(n)

λd

2

(5.8)

for some real coefficients λd depending on d = (d1, . . . , dk).

We want to restrict the support of λd to Dk(L ), where

Dk(L ) := {d ∈ Nk : µ2(d1 . . . dk) = 1; (d1 . . . dk,WB) = 1;

(dj , p) = 1 if j 6∈ {jp,1, . . . , jp,ω(p)}} (5.9)

The reason we choose there restrictions is that we want different components d and e appearing in the
sum (5.8) to be relatively coprime. Indeed, let d and e both appearing an the sum and p|(di, ej), for some
i 6= j. Then p|Li(n), hence i must be the chosen index for the residue class n (mod p). But similarly j
must be the chosen index for the same residue class, which is a contradiction. Hence a prime will divide
only elements with the same index appearing in the sum.

We define

λd1,...,dk := µ(d1 . . . dk)d1 . . . dkSWB(L )
∑

r∈Dk(L )
di|ri, for all i

1

ϕ(r1 . . . rk)
F

(
log r1
logR

, . . . ,
log rk
logR

)
(5.10)
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Here, F : Rk → R will be a smooth function supported on {(t1, . . . , tk) ∈ Rk+ : t1 + · · ·+ tk ≤ 1}. This
condition makes sure that the terms in the sum in (5.10) are non-zero only if r1 . . . rk ≤ R. There is
some liberty in the choice of R, but for our purposes we take R = x1/9.

We use the following key theorem from [13] about the constructions of weights w(n):

Theorem 5.6 There exists a universal constant C such that the following holds. Let L = {L1, . . . , Lk}
be an admissible set of linear forms such that C ≤ k ≤ log1/5 x. Assume that the coefficients ai, bi of the
linear forms Li(n) = ain+ bi satisfy the bounds |ai|, |bi| ≤ x2. for all i ∈ [k]. Then there exists a smooth
function F : Rk → R and quantities Ik, Jk depending only on k satisfying

Ik � (2k log k)−k and Jk �
log k

k
Ik (5.11)

such that for w(n) described above, the following statements hold uniformly for x1/30 ≤ R ≤ x1/9:

• For all n ∈ Z, we have
w(n)� x1/3 (5.12)

• ∑
x≤n≤2x

w(n) =

(
1 +O

(
1

log1/10 x

))
x

Bk

φ(B)k
S(L )(logR)kIk (5.13)

• Let L(n) = n. If L ∈ L , we have∑
x≤n≤2x
n prime

w(n) =

(
1 +O

(
1

log1/10 x

))
S(L )

x

log x
(logR)k+1Jk

Bk−1

φ(B)k−1

+O

(
Bk

φ(B)k
S(L )x(logR)k−1Ik

)
(5.14)

Let h1, . . . , hk be the first k primes larger than k, i.e. hi = pπ(k)+i. In particular, we have that hi ≤ 2k2,
for k large enough. For each i ∈ [k], let Li(n) = n + hip. For all p ∈ P, we define Lp = {L1, . . . , Lk}.
It is easy to see that Lp is an admissible set of linear forms.

We then have that
ωp(q) := ωLp

(q) = #{hi (mod q)} if q 6= p

so ωp are all very close to being equal. It makes to define ω(q) = #{hi (mod q)}, for all primes q.
Then

SD :=
∏
q-D

(
1− ω(q)

q

)(
1− 1

q

)−k
=

(
1 +O

(
k

x

))
SD(Lp) (5.15)

for all integers D, since x
2 ≤ p ≤

x
4 and ω(q), ωp(q) ≤ k, for all primes q and p ∈P.

We observe that for q > 2k2, q - B, all hi are distinct mod q (since hi < 2k2, for all i). So if q 6= p, we
have that ωp(q) = k and {jq,1(Lp), . . . , jq,ωp(q)(Lp)} = {1, 2, . . . , k}.

Also, when q ≤ R, we have that q 6= p, for all p ∈P since R ≤ x/4. Hence,

Dk(Lp) ∩ {(d1, . . . , dk) :

k∏
i=1

di ≤ R} = {d ∈ Nk : µ2(d) = 1, (d,WB) = 1, d ≤ R}

is independent of p. Hence, using (5.10), we get

λd(Lp) =
SD(Lp)

SD
λd =

(
1 +O

(
k

x

))
λd

for some λd independent of p, for all integers D.

We define
w(p, n) := 1[−y,y](n)wLp

(n) (5.16)
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We are now ready to apply Theorem 5.6. Recall that we want to estimate
∑
n∈Z w(p, n). For this

purpose, we define the set L ′p composed of linear forms Li(n) = n+ hip− 3 byc, for i ∈ [k]. Clearly L ′p
is admissible, ωL ′p = ωLp

and SD(L ′p) = SD(Lp). Also,∑
n∈Z

w(p, n) =
∑

−y≤n≤y

wLp
(n) =

∑
y≤n≤2y

wL ′p(n)

From (5.13) and (5.15), we see that∑
n∈Z

w(p, n) =

(
1 +O

(
1

log1/10 x

))
y S

Bk

φ(B)k
(logR)kIk (5.17)

Let

t := S
Bk

φ(B)k
(logR)kIk (5.18)

Using (5.7), (5.11), we see that t ≥ 1. Hence∑
n∈Z

w(p, n) =

(
1 +O

(
1

log1/10 x

))
ty (5.19)

which gives us (5.1).

Fix i ∈ [k] and q ∈ Q. We want to approximate
∑
p∈P w(p, q− hip). For this purpose, we define the set

of linear forms L
(i)
q = {L1, L2, . . . , Lk}, where Li(n) = n and Lj(n) = q + (hj − hi)n, for i 6= j.

We check that L
(i)
q is admissible. Indeed, for any prime s 6= q, the number of solutions mod s to

n
∏
i 6=j

(n+ (hj − hi)q) ≡ 0 (mod s)

is #{hj (mod s) : j ∈ [k]} < s since (h1, . . . , hk) admissible. Hence, similar as before we obtain
that

SD(L (i)
q ) =

(
1 +O

(
k

x

))
SD (5.20)

for all integers D and that Dk(L
(i)
q ) ∩ {(d1, . . . , dk) : d1 . . . dk ≤ R} is independent of q and i, so once

again

λd(L (i)
q ) =

(
1 +O

(
k

x

))
λd .

Now, since q − hip ∈ [−y, y], for all q ∈ Q and i ∈ [k], then

w
L

(i)
q

(p) =

(
1 +O

(
k

x

))
wLp(q − hip) =

(
1 +O

(
k

x

))
w(p, q − hip) .

Hence ∑
p∈P

w(p, q − hip) =

(
1 +O

(
k

x

)) ∑
p∈P

w
L

(i)
q

(p)

We apply (5.14) to get∑
p∈P

w(p, q − hip) =

(
1 +O

(
1

log1/10 x

))
S

x

4 log x
(logR)k+1Jk

Bk−1

φ(B)k−1
+O

(
x

Bk

φ(B)k
S(logR)k−1Ik

)
where we used (5.20). From our choice of R and (5.11), we see that the second error term can be absorbed
into the first one.

Let

u :=
φ(B)

B

logR

log x

kJk
Ik

Then we have that ∑
p∈P

w(p, q − hip) =

(
1 +O

(
1

log1/10 x

))
tu

k

x

4
(5.21)
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6 Proof of large gaps

6.1 Random uniform choice

Recall that S = {p prime : log10 x < p ≤ z}, where z = xlog3 x/4 log2 x.

We have the random vector #»a := (as mod s)s∈S where each residue class as is selected uniformly at
random independently in s. We define the random set

S( #»a ) := {n ∈ Z : n 6≡ as (mod s), for all s ∈ S } (6.1)

which is a subset of Z with density

σ :=
∏
s∈S

(
1− 1

s

)
.

Using Mertens’ Theorem, we deduce that

σ :=
∏

log10 x<p≤z

(
1− 1

p

)
∼ 10 log2 x

log z
= 40

log2
2 x

log x log3 x
(6.2)

Lemma 6.1 Let t ≤ log x and n1, n2, . . . , nt distinct integers such that |ni| ≤ x2, for all i. Then

P(n1, n2, . . . , nt ∈ S( #»a ) =

(
1 + o

(
1

log6 x

))
σt

Proof We note that if n1, n2, . . . , nt are not distinct modulo some prime s ∈ S , then s divides one of
ni − nj , for some 1 ≤ i < j ≤ t. But for each 1 ≤ i < j ≤ t, we have that |ni − nj | ≤ 2x2, so it can

be divisible by at most O
(

log x
log2 x

)
primes which are at least log10 x. Hence there are o(t2 log x) possible

values of s such that n1, . . . , nt are not distinct residue classes modulo s. Hence the probability that as
avoids all n1, . . . , nt is 1− t

s except for o(log3 x) values of s, where it is(
1− t

s

)(
1 +O

(
t

s

))
=

(
1− t

s

)(
1 +O

(
1

log9 x

))
Hence

P(n1, n2, . . . , nt ∈ S( #»a )) =
∏
s∈S

(
1− t

s

)(
1 +O

(
1

log9 x

))o(log3 x)

=

(
1 + o

(
1

log6 x

))
σt
∏
s∈S

(
1 +O

(
t2

s2

))
= σt

(
1 + o

(
1

log6 x

))
Lemma 6.2 With probability 1− o(1), we have that

|Q ∩ S( #»a )| ∼ σ|Q| ∼ 40c
x log2 x

log x

More precisely, with probability 1− o(1),

|Q ∩ S( #»a )| =
(

1 +O

(
1

log2 x

))
40c

x log2 x

log x

Proof Let
X( #»a ) = #(Q ∩ S( #»a )) =

∑
q∈Q

1q∈S( #»a ) .

Then, using Lemma 6.1

EX( #»a ) =

(
1 +O

(
1

log6 x

))
σ|Q|
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and

EX( #»a )2 =

(
1 +O

(
1

log6 x

))
(σ|Q|+ σ2|Q|(|Q| − 1)) =

(
1 +O

(
1

log6 x

))
σ2|Q|2

since |Q| ∼ y
log x by the prime number theorem and using our choice of y (2.1). Then the conclusion

follows from Lemma 3.1.

6.2 Weighted choice

Our goal is to construct random variables np such that {np + hip : i ∈ [k]} ∩Q( #»a ) large on average.
First, we will apply Theorem 5.2 to guarantee that sets of the form {n + hip : i ∈ [k]} contain many
primes.

For each p ∈P,we select a random number mp ∈ [0, y] with probability proportional to w(p, n):

P(mp = n) :=
w(p, n)∑
z∈Z w(p, z)

(6.3)

Informally, the probability is big when many of n+ hip are prime.

First, we notice from (5.12) and (5.19) that for all p ∈P and n ∈ Z

P(mp = n)� x−2/3 (6.4)

Using (5.19) and (5.21), we note that for all q ∈ Q and i ∈ [k]:∑
p∈P

P(mp = q − hip) =
∑
p∈P

w(p, q − hip)
1∑

n∈Z w(p, n)
=

(
1 +O

(
1

log1/10 x

))
u

k

x

4y
(6.5)

where u ≈ log2 x.

For each p ∈P, we define Xp(
#»a ) by

Xp(
#»a ) = P(mp + hip ∈ S( #»a ), for all i ∈ [k])

In light of Lemma 6.1, we expect that Xp(
#»a ) ∼ σk. Indeed, denote P( #»a ) the set of primes p ∈P such

that

Xp(
#»a ) =

(
1 +O≤

(
1

log2 x

))
σk

We will see in Lemma 6.3 that |P( #»a )| ∼ |P| with probability 1− o(1).

We define

Zp(
#»a , n) =

{
1 if n+ hjp ∈ S( #»a ), for all j ∈ [k]

0 otherwise.

We want to define random variable np proportional to mp and conditional on #»a such that we can assure
n+ h1p, . . . , n+ hkp ∈ S ( #»a ) if P(np = n| #»a = #»a ) 6= 0. If p ∈P( #»a ), we let

P(np = n| #»a = #»a ) =
Zp(

#»a , n)

Xp(
#»a )

P(mp = n)

Otherwise, if p ∈P \P( #»a ), we let np = 0. From our choice of Xp(
#»a ), we see that this is a well defined

random variable. This is a very similar construction to the choices of e′i in the proof of the Theorem
4.2.

First, we prove indeed that |P( #»a )| ∼ |P| with high probability:

Lemma 6.3 |P( #»a )| ≥
(

1− 1
log x

)
|P| with probability 1−O

(
1

log x

)
.
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Proof First, we observe that

EXp(
#»a ) =

∑
#»a

∑
n

Zp(
#»a , n)P(mp = n)P( #»a = #»a )

=
∑
n

P(mp = n)P(n+ h1p, . . . , n+ hkp ∈ S( #»a ))

=

(
1 +O

(
1

log6 x

))
σk

using Lemma 6.1. Secondly, we see that

EXp(
#»a )2 =

∑
#»a

(∑
n1,n2

Zp(
#»a , n1)Zp(

#»a , n2)P(mp = n1)P(mp = n2)

)
P( #»a = #»a )

=
∑
n1,n2

P(mp = n1)P(mp = n2)P(n1 + h1p, . . . , n1 + hkp, n2 + h1p, . . . , n2 + hkp ∈ S( #»a ))

=

(
1 +O

(
1

log6 x

))
Eσ#{m(l)

p +hip :i∈[k],l=1,2}

From (6.4) and from k ≤ log x, we know that #{m(l)
p + hip : i ∈ [k], l = 1, 2} is 2k with probability

1−O
(
x−2/3+o(1)

)
. Hence

EXp(
#»a )2 =

(
1 +O

(
1

log6 x

))
σ2r

(
1 +O

(
x−1/2

))
=

(
1 +O

(
1

log6 x

))
σ2r

Now we are ready to apply Lemma 3.1. We get that

P
(
|Xp(

#»a )− σk| ≥ σk

log2 x

)
= O

(
1

log2 x

)
This means that for each prime p ∈P, we have that P(p ∈P( #»a )) = 1−O

(
1

log2 x

)
.

Let

Yp(
#»a ) :=

{
1 if p ∈P( #»a );

0 otherwise.

Then clearly #P( #»a ) =
∑
p∈P Yp(

#»a ). Using Markov’s inequality and linearity of expectation, we get

P
(
|P \P( #»a )| ≥ |P|

log x

)
≤
∑
p∈P P(p 6∈P( #»a ))

|P|/ log x
= O

(
1

log x

)
which is what we wanted to prove.

Let
C :=

ux

4σy
(6.6)

From (2.1), (6.2) and that u ≈ log2 x, we deduce that C ≈ 1
c , where c is the small constant in the

definition of y.

Recall that for fixed #»a , we let
ep(

#»a ) = {np + hip : i = 1, . . . , k}

Lemma 6.4 With probability 1− o(1), we have that∑
p∈P

P(q ∈ ep(
#»a )) = C +O≤

(
1

log2
2 x

)

for all but at most x
log x log2 x

primes in Q ∩S ( #»a ).
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Proof We notice that

∑
p∈P

P(q ∈ ep(
#»a )| #»a = #»a ) =

k∑
i=1

∑
p∈P( #»a )

P(np = q − hip| #»a = #»a )

=

(
1 +O

(
1

log2 x

))
σ−k

k∑
i=1

∑
p∈P( #»a )

Zp(
#»a , q − hip)P(mp = q − hip)

since P(q ∈ ep(
#»a )) = 0 if p 6∈P( #»a ). Hence it will suffice to show that

σ−k
k∑
i=1

∑
p∈P( #»a )

Zp(
#»a , q − hip)P(mp = q − hip) =

(
1 +O

(
1

log3
2 x

))
C (6.7)

with probability 1− o(1) for all but x
log x log2 x

primes q ∈ Q.

We would like to be able to replace the inner sum in (6.7) to p ∈P. Clearly,

∑
q∈Q

k∑
i=1

∑
p∈P\P( #»a )

Zp(
#»a , q − hip)P(mp = q − hip) ≤ k

∑
n∈Z

∑
p∈P\P( #»a )

Zp(
#»a , n)P(mp = n)

We note that

E

∑
n

∑
p∈P

Zp(
#»a , n)P(mp = n)

 =
∑
p∈P

∑
n

P(mp = n)P(n+ hjp ∈ S( #»a ), for all j ∈ [k])

=

(
1 +O

(
1

log6 x

))
σk|P| (6.8)

and that

E

∑
n

∑
p∈P( #»a )

Zp(
#»a , n)P(mp = n)

 =
∑

#»a

P( #»a = #»a )
∑

p∈P( #»a )

Xp(
#»a )

=

(
1 +O

(
1

log x

))
σk|P| (6.9)

where we have used Lemma 6.3. Subtracting (6.9) from (6.8) we obtain

∑
q∈Q

E

σ−k k∑
i=1

∑
p∈P\P( #»a )

Zp(
#»a , q − hip)P(mp = q − hip)

 = O

(
|P|
k log x

)

From Markov’s inequality, it follows that

∑
q∈Q

P

σ−k k∑
i=1

∑
p∈P\P( #»a )

Zp(
#»a , q − hip)P(mp = q − hip) ≥

1

log3
2 x

 = O

(
|P| log3

2

k log x

)
= O

(
x

log x log3
2 x

)

Hence there are at most x
log x log2

2 x
primes q ∈ Q for which

P

σ−k k∑
i=1

∑
p∈P\P( #»a )

Zp(
#»a , q − hip)P(mp = q − hip) ≥

1

log3
2 x

 ≥ 1

log2 x
.

Therefore, it is enough to show that, with probability 1− o(1),

σ−k
k∑
i=1

∑
p∈P

Zp(
#»a , q − hip)P(mp = q − hip) =

(
1 +O

(
1

log3
2 x

))
C (6.10)
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for all but at most x
log x log2

2 x
primes q ∈ Q ∩S ( #»a ).

For q ∈ Q, let Yq(
#»a ) =

∑k
i=1

∑
p∈P Zp(

#»a , q−hip)P(mp = q−hip). Clearly Yq(
#»a ) = 0 if q 6∈ Q∩S ( #»a ).

From (6.5), we have that

EYq( #»a ) =

k∑
i=1

∑
p∈P

P (q + (hj − hi)p ∈ S ( #»a ) for all j ∈ [k])P(mp = q − hip)

=

(
1 +O

(
1

log20
2 x

))
σku

x

4y

and

EYq( #»a )2 =
∑

p1,p2∈P

∑
i1,i2

P(q + (hj − hilpl ∈ S ( #»a ) for j ∈ [k], l = 1, 2)P(mp1 = q − hi1p1)P(mp2 = q − hi2p2)

We note that #{q + (hj − hilpl) : j ∈ [k], l = 1, 2} = 2k − 1 unless p1 = p2, since hi < x/4, for all i. We
use again (6.4) to see that the terms with p1 = p2 have negligible contribution. Hence we obtain

EYq( #»a )2 =

(
1 +O

(
1

log20
2 x

))
σ2k−1

(
u
x

4y

)2

We know from Lemma 6.1 that P(q ∈ S( #»a ) = σ
(

1 +O
(

1
log6 x

))
, hence

E(Yq(
#»a )|q ∈ S( #»a )) =

(
1 +O

(
1

log20
2 x

))
σk−1u

x

4y

and

E(Yq(
#»a )2|q ∈ S( #»a )) =

(
1 +O

(
1

log20
2 x

))(
σk−1u

x

4y

)2

.

Therefore, using Lemma 3.1, we get that

P
(∣∣∣∣σ−kYq( #»a )− u

σ

x

4y

∣∣∣∣ ≥ 1

log6
2 x

u

σ

x

4y
| q ∈ S( #»a )

)
≤ 1

log6
2 x

Hence

E

 ∑
q∈Q∩S( #»a )

Yq(
#»a )

 = E

∑
q∈Q

Yq(
#»a )

 =

(
1 +O

(
1

log20
2 x

))
σku

x

4y
|Q|

and

E

 ∑
q∈Q∩S( #»a )

Yq(
#»a )2

 =

(
1 +O

(
1

log20
2 x

))
σ2k−1

(
u
x

4y

)2

|Q|

We obtain that

P

 ∑
q∈Q∩S( #»a )

∣∣∣∣Yq( #»a )− σk−1u x
4y

∣∣∣∣ ≥ 1

log6
2 x
|Q|σku x

4y

 ≤ 1

log6
2 x

In conclusion, with probability 1− 1
log6

2 x
, the number of q ∈ Q ∩ S( #»a ) such that σ−kYq(

#»a ) ≥ 1
log3

2 x
u
σ
x
4y

is at most

O

(
σ|Q|
log3

2 x

)
= O

(
x

log x log2
2 x

)
using (6.2) and (2.1).
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6.3 Applying the covering lemma

Let’s summarise what we have achieved so far. For each #»a in the range of #»a , we have constructed
random integers np and random subsets ep(

#»a ) = {np + hip : i ∈ [k]} ∩ Q( #»a ). From Lemma 6.4, we
know that that with probability 1− o(1) in #»a ,∑

p∈P

P(q ∈ ep(
#»a )) = C +O≤

(
1

log2
2 x

)
(6.11)

for all but at most x
log x log2 x

primes in Q ∩S ( #»a ).

From Lemma 6.2, we know that with probability 1− o(1), we have that

|Q( #»a )| = |Q ∩ S( #»a )| =
(

1 +O

(
1

log2 x

))
40c

x log2 x

log x
(6.12)

From now on, fix #»a in the range of #»a such that (6.11) and (6.12) both hold.

For all q ∈ Q, p ∈P:

P(q ∈ ep(
#»a )| #»a = #»a ) =

k∑
i=1

P(np = q − hip)� σ−k
k∑
i=1

P(mp = q − hip) ≤ x−3/5 (6.13)

for x large enough, where we used (6.4). Also, for distinct integers q1, q2 ∈ Q, if q1, q2 ∈ ep(
#»a ), then

p|q1 − q2. But q1 − q2 ≤ x log x, so the difference is divisible by at most on prime p0 ∈P. Hence∑
p∈P

P(q1, q2 ∈ ep(
#»a )) = P(q1, q2 ∈ ep0( #»a )) ≤ x−3/5 . (6.14)

Note that we satisfy all the conditions of Theorem 2.4 stated in the first section. Now we are ready to
apply our hypergraph covering Lemma 4.3. Set V = Q( #»a ), I = P, ei = ep(

#»a ), r(x) = k = (log x)1/5,
f(x) = log2 x, δ = x−1/20. Then we see that all the conditions in Lemma 4.3 are satisfied. We conclude
there exist random variables e′p(

#»a ) whose support is contained in the support of ep(
#»a ) together with ∅

such that

#
{
q ∈ Q( #»a ) : q 6∈ e′p(

#»a ), for all p ∈P
}
∼ 1

log2 x
|Q( #»a )| ≤ x

6 log x

with probability 1− o(1). But e′p(
#»a ) = {n′p + hip : 1 ≤ i ≤ k} ∩Q( #»a ) or ∅ for some random integers n′p

with the same support as np. Hence

{q ∈ Q( #»a ) : q 6≡ n′p (mod p) for all p ∈P} ⊆ {q ∈ Q( #»a ) : q 6∈ e′p(
#»a ), for all p ∈P}

Now just take np in the range of n′p such that

{q ∈ Q( #»a ) : q 6≡ np (mod p) for all p ∈P} ≤ x

6 log x
.

This completes the proof, since after using all primes less than x/2 in our sieving process, we are left
with at most x

5 log x which can be cleared using primes in [x/2, x].
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