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Abstract

The classical Erdős distinct distances problem asks what is the least number of distinct
distances determined by N points in the plane. Erdős conjectured in 1946 that this number
is at least N1−o(1). Despite the fact that the lower bound has been improved successively
in the following years, the conjecture remained open until 2010, when Larry Guth and Nets
Katz showed that the number of distinct distances is & N/ logN . Their proof is considered
an important breakthrough and it uses the polynomial method, a relatively new technique
which turned out to have a wide range of applications.

In this report we aim to give an accessible and detailed exposition of their proof. We
will highlight the algebraic geometry prerequisites and we will obtain our own constants.
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1 Introduction

The classical Erdős distinct distances problem asks what is the least number of distinct distances
determined by N points in plane. In the original paper [4] from 1946, Erdős called this number
f(N). By considering N points equally spaced along a line, we note that f(N) ≤ N − 1. If we
consider a

√
N ×

√
N grid, then the square of each distance is the sum of two squares between

0 and N . We recall the famous Landau-Ramanujan theorem in analytic number theory:

Theorem 1.1 (Landau-Ramanujan) Let g(N) be the number of positive integers smaller
than N that can be written as the sum of two squares. Then g(N) = O(N/

√
logN).

In this report, if f, g : X → R+ are two functions with real values, by f . g or f = O(g) we
mean that that there exists a constant C > 0 such that f(x) ≤ C · g(x), for all x ∈ X. We can
similarly define f & g.

Therefore we obtain that

f(N) ≤ g(2N) = O(2N/
√

log(2N)) = O(N/
√

logN) .

However, it is more difficult to obtain a good lower bound for f(N). In his original paper, Erdős
could only prove that f(N) ≥ (N − 3/4)1/2 − 1/2. The proof of this fact is easy and worth
exposing from an historical point of view.

Say P = {p1, . . . , pN} is a set of N points in plane and say that p1 belongs to the convex hull
of these points. We look at the distances d(p1, pi), for 2 ≤ i ≤ N . Say among these distances
there are k different distances and r is the most number of times a distance occurs. Then clearly
kr ≥ N − 1. Say d(p1, q1) = d(p1, q2) = · · · = d(p1, qr) = a, for Q = {q1, . . . , qr} a subset of
{p2, . . . pn}. Then all points in Q lie in a semicircle of radius a centered at p1 (as p1 belongs to
the convex hull). We may assume that q1, q2, . . . , qr are in this order on the semicircle, so we
obtain r − 1 distinct distances d(q1, q2), d(q1, q3), . . . , d(q1, qr). Hence

f(N) ≥ max{r − 1, k} ≥ max

{
r − 1,

N − 1

r

}
,

which is minimised when r(r − 1) = N − 1, so we obtain the desired result.

This is not an optimal approximation at all. Inspired by the example of the grid, Erdős provided
the following conjecture:

Conjecture 1.2 (Erdős) There exists a constant C > 0 such that f(N) ≥ C · N1−ε, for all
ε > 0.

The lower bound for f(N) has successively improved over the years. To give a few examples,
Moser in [11] (1952) obtained that f(N) & N3/2, Chung, Szemerédi and Trotter in [1] (1992)
obtained that f(N) & N4/5/ logN , and Kutz and Tardos in [10] (2004) obtained that f(N) &
N0.864.

Erdős’s conjecture remained open until 2010, when L. Guth and N.H. Katz in [7] proved the
following theorem:

Theorem 1.3 f(N) & N/ logN .

The main goal of this report is to give an exposition of the proof of theorem 1.3.

The proof is considered to be a very important breakthrough and it is very innovative. It mainly
uses the polynomial method, a new and powerful technique in combinatorics. Other examples of
famous conjectures recently proved using the polynomial method include the finite field Kakeya
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problem (Dvir [2] in 2009) or the joints problems (Guth and Katz [8] the 3-dimensional case and
Kaplan, Sharir and Shustin [9] the n-dimensional case in 2010). What is remarkable about the
polynomial method is that it provides short proofs to problems which were previously considered
very hard and deep. Also, since it is a relatively new method, the full power of the polynomial
method is not yet fully understood. It turned out that it has very many applications in additive
combinatorics, incidence geometry and number theory.

There are some very good introductory resources to polynomial method. For example, Tao
provided a very good expository article in [16], while I found particularly helpful the polynomial
method course given by Guth at MIT in Fall 2012 (available in [5]). Also, last year Guth
published a book about the polynomial method in combinatorics [6].

Next, we are going to discuss the main steps in the proof of theorem 1.3. We will more or
less follow the approach from the original paper of Guth and Katz [7]. In section 2, we are
going to show how to reduce our problem about distances between points in R2 to a problem
about incidences of lines in R3, by a method which is now commonly called the Elekes-Sharir
framework. We will show that in order to prove theorem 1.3, it will be enough to prove the
following theorem:

Theorem 1.4 Let L be a set of N2 lines in R3 such that there are . N lines in any plane or
any degree 2 surface. Then for all 2 ≤ k ≤ N , the number of points that belong to at least k
lines is . N3k−2.

The key idea is to find a polynomial P ∈ R[x, y, z] such that Z(P ) contains ”most” of the lines
in L (throughout this essay, by Z(P ) we mean the zero set of P , i.e. {a ∈ R3 : P (a) = 0}). We
will see that we have to treat the cases k = 2 and k ≥ 3 separately. This is because if there is a
point a ∈ Z(P ) such that there are 3 lines in Z(P ) that intersect at a, then we can find some
additional properties of a and apply them. Such points are called flat points and their theory
is exposed in detail in section 3.2.

When k = 2, we will use the theory of ruled surfaces in 3 dimensions (a surface Z is ruled if
through any point a ∈ Z, there is a line l ⊂ Z such that a ∈ l). In section 3.3 we will prove
2 important properties of ruled surfaces. First we will see that if for some polynomial P , the
surface Z(P ) contains many lines, then it must have a ruled factor. Secondly, we will prove that
if Z(P ) is a ruled surface that has no factors which are planes or reguli, then the number of
intersections between N2 of lines in Z(P ) is O(N3). Reguli are doubly-ruled irreducible surfaces
of degree 2 which we will describe properly in section 3.3. This theorem is important because
we can see that in a plane or in a regulus, N2 lines can have ∼ N4 points of intersections, so it
means that planes and reguli are essentially the only surfaces with many points of intersections
between lines.

We complete the proof for the case k = 2 in section 5. Using a probabilistic argument, we will
find a polynomial P of low degree that contains most lines in L and most points of intersections
between lines in L . By assumption, there are not many lines in a plane or a regulus, so there are
not many intersections inside planes or reguli. Also, the other components of P don’t contribute
with many intersections, so we’ll be able to bound the number of intersections between lines in
L . Of course, everything will be treated and explained carefully.

For the case k ≥ 3, we will first study the polynomial cell decomposition, which was the
most celebrated idea in the proof of Guth and Katz in [7]. In section 4 we will show that
given a number of points in R3, we can find a non-zero polynomial P of low degree and a cell
decomposition of R3 such that the boundary of the the cells are contained in Z(P ) and that
each cell contains ”few” points. Also, we are going to show how to use this in order give a proof
to the classical Szémeredi-Trotter theorem, probably the most important theorem and tool in
incidence geometry.
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We complete the proof in section 6. Using the cell decomposition method, we find a polynomial
P such that Z(P ) contains most of the lines in L and most of points that belong to at least k
lines of L . Let’s call S the set of points that belong to at least k lines of L and S′ ⊂ S the
subset of these points which are contained in 3 lines of L belonging to Z(P ) (so points in S′

are either critical or flat). We will show that S′ contains most of the points of S and that most
of the lines contain ”many” points of S′. In section 3.2 we will see that if Z(P ) has no planar
component, there cannot be many such lines, hence most lines will lie in planar components of
Z(P ). We will obtain the conclusion from the fact that the we control the degree of P to be
fairly low and that by assumptions there are not too many lines in a plane.

Note that theorem 1.3 does not fully solve the Erdős distinct distances problem, even if it makes
substantial progress. All we know so far is that

N

logN
. f(N) .

N√
logN

.

It is not currently known if there is a better example than the grid that provides a better upper
bound for f(N) or if the lower bound we prove in this report can be improved. We note that is
unlikely that this lower bound can be improved using the polynomial method, because actually
this approach is all about proving theorem 1.4 in incidence geometry which in turn using the
Elekes-Sharir framework implies that f(N) & N/ logN .

We now discuss some related open problems. One natural question to ask is the distinct dis-
tances problem in higher dimensions. Denote by fd(N) the minimal possible number of dis-
tinct distances among N points in Rd. In the same paper from 1946 [4], Erdős showed the
bounds

N1/d . fd(N) . N2/d .

He conjectured that for d ≥ 3, fd(N) behaves asymptotically as N2/d.

Conjecture 1.5 (Erdős) Let d ≥ 3. Then there exists constants c1 and c2 such that

c1N
2/d ≤ fd(N) ≤ c2N2/d .

This conjecture is still open. The best lower bound currently known was found by Solymosi
and Vu in 2008 in [13], where they greatly improved the lower bound to

fd(N) & N
2
d
− 2

d(d+2) .

We note that the higher dimensional distinct distances problem is more difficult to attempt
using the polynomial method, because the we cannot apply the Elekes-Sharir framework in
order to transform it into an incidence geometry problem.

If we think about the minimum number of distances between N points in plane, it is also natural
to think what is the maximum number of times a distance appears between N points in plane.
This is known as the unit distances problem, and was posed in the same paper [4]. Denote by
u(N) the maximum number of pairs at unit distance in a set of N points in the plane. Erdős
proved that there exists a constant c such that

N1+c/ log logN < u(N) < N3/2 .

He also conjectured that u(N) = O(N1+ε), for all ε > 0. The best current upper bound is due to
Spencer, Szemerédi and Trotter in [14] in 1984, where they proved that u(N) = O(N4/3).

The main goal of this report is to provide an accessible and easy to read proof of theorem 1.3. In
order do this, I chose to have all algebraic geometry prerequisites separately in section 3 where
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I attempt to explain them in great detail. Also, I have chosen to work with explicit constants
rather than O or . notation most of the time just to make thinks clearer (this is because one of
the things I found difficult in the original paper [7] was the independence of some inequalities
involving .). Even though I worked with sharper bounds than in [7], I still obtained constants
as big as 270, but they are nonetheless finite constants (and by no means the best obtainable, I
was also rather careless in many of my approximations and inequalities).
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2 Reduction to an incidence problem

The purpose of this section to connect our problem about the number of distinct distances to
a problem of incidences of lines in R3.

Let P ⊂ R2 denote a set of N points in the plane. We would like to look at the set of distances
between them

d(P) := {d(p, q) : p, q ∈P, p 6= q} .

Our main goal is to show that d(P ) & N/ logN . We will look at the set of quadruples

Q(P) = {(p, q, r, s) ∈P4 : d(p, q) = d(r, s) 6= 0} .

Intuitively, if the set of distinct distances d(P) is small, then we would have many distances
repeated, so Q(P) should be large. Indeed, we easily obtain the following inequality:

Lemma 2.1 Let P ⊂ R2 a set of N points in the plane. Then

|d(P)| ≥ (N2 −N)2/|Q(P)| .

Proof Say d(P) = {d1, . . . , dm}, where m = |d(P)|. For each 1 ≤ i ≤ m, say there are ni
pairs (p, q) ∈ P2 such that d(p, q) = di. The total number of pairs (p, q) such that p 6= q is
N2 −N , so clearly we have

m∑
i=1

ni = N2 −N .

On the other hand, we note that

|Q(P)| =
m∑
i=1

n2i .

Hence, by applying Cauchy-Schwarz, we obtain

|Q(P)| =
m∑
i=1

n2i ≥
1

m

(
m∑
i=1

ni

)2

≥ (N2 −N)2

|d(P)|
.

Rearranging, we obtain the desired conclusion.

Now we note that in order to prove that d(P) & N/ logN , it is enough to prove that |Q(P )| =
O(N3 logN) . Indeed, suppose there exists an universal constant C such that
|Q(P)| ≤ CN3 logN , for all sets P ⊂ R2 of N points in plane. Then we have

|d(P)| ≥ (N2 −N)2

C ·N3 logN
≥ 1

4C
N/ logN ,

because (N2 −N)2 ≥ (1/4)N4 for all N ≥ 2.

Now we focus on describing Q(P). For this purpose, let G denote the group of orientation-
preserving rigid motions of the plane, that is the group generated by rotations and translations.
This is useful because of the following observation:

Lemma 2.2 Let p, q, r and s be 4 points in R2 such that p 6= q. Then d(p, q) = d(r, s) if and
only if there exists a unique g ∈ G such that g(p) = r and g(q) = s.

Proof Let p, q, r and s be 4 points in R2 such that d(p, q) = d(r, s) 6= 0. Note that all rigid
motions in G sending p to r are of the form Rr,θ ◦ τr−p, where Rr,θ is the rotation of angle θ
about the point r, and τr−p is the translation sending p to r (indeed, check that if g is a positive
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isometry such that g(p) = r, then g ◦ τ−1r−p(r) = r, so g ◦ τ−1r−p must be a rotation around r).
Also, since g(q) = s, we have that

s = g(q) = Rr,θ ◦ τr−p(q) = Rr,θ(q + r − p) .

Since d(r, q+ r− p) = |q− p| = |r− s| = d(r, s), there exists a unique rotation around r sending
q + r − p to s.

The other direction is trivial, since g is a rigid motion, so it preserves distances.

The lemma above shows that for each quadruple (p, q, r, s) ∈ Q(P), there exists a unique g ∈ G
such that g(p) = r and g(q) = s. Hence we can define a map

E : Q(P)→ G

which sends every quadruple to the corresponding rigid motion. Then clearly we have

|Q(P)| =
∑
g∈G
|E−1(g)| ,

where E−1(g) is non-empty for finitely many positively oriented rigid motions. Therefore it
would be useful to find an estimate for |E−1(g)|. It is not hard to observe that |E−1(g)|
depends on the number of points in P preserved by g (which is |P ∩ gP|).

Lemma 2.3 Say g ∈ G and |P ∩ gP| = k. If k < 2, then |E−1(g)| = 0 and if k ≥ 2, then
|E−1(g)| = k(k − 1).

Proof Let (p, q, r, s) ∈ Q(P) and g = E((p, q, r, s)). Then g(p) = r and g(q) = s, hence
{r, s} ⊂P ∩ gP. Therefore |P ∩ gP| ≥ 2 as r 6= s by definition.

Now suppose that |P ∩ gP| = {r1, . . . , rk}, for some k ≥ 2. Let pi = g−1(ri), for 1 ≤ i ≤ k.
Then clearly p1, . . . , pk ∈ P and they are distinct. It is easy to see that (pi, pj , ri, rj) ∈ E−1(g),
for all 1 ≤ i, j ≤ k with i 6= j, as g preserves distances. This gives rise to k(k − 1) quadruples
in E−1(g). We need to check these are all of them.

Let (p, q, r, s) ∈ Q(P) such that g = E((p, q, r, s)). Then clearly, as we noted before,

{r, s} ⊂P ∩ gP .

Say r = ri and s = rj , for some i, j. Then p = g−1(r) = pi and q = g−1(s) = pj , so it is one of
the quadruples described above.

So it is natural to define

G=k := {g ∈ G : |P ∩ gP| = k}

and
Gk := {g ∈ G : |P ∩ gP| ≥ k} .
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Using the lemma above, we obtain

|Q(P)| =
∑
g∈G
|E−1(g)| =

N∑
k=2

|G=k| · k(k − 1)

=
N∑
k=2

(|Gk| − |Gk+1|) · k(k − 1) (as GN+1 = ∅)

=
N∑
k=2

|Gk| · ((k(k − 1)− (k − 1)(k − 2))

=

N∑
k=2

|Gk| · (2k − 2)

Hence we want to bound |Gk|. This suggest the following theorem:

Theorem 2.4 There exists an universal constant C > 0 such that for all N and for any set
P ⊂ R2 of N points in plane, we have

|Gk| ≤ C ·N3k−2 ,

for all 2 ≤ k ≤ N .

It is easy to see that this would imply that Q(P) = O(N3 logN), because

|Q(P)| ≤
N∑
k=2

|Gk| · (2k − 2) ≤ 2CN3 ·
N∑
k=2

1

k
≤ 4C ·N3 logN .

Hence now the main we focus on proving theorem 2.4. We will first prove it for translations. Let
T ⊂ G denote the subgroup of G of translations, which is isomorphic to R2. We obtain:

Lemma 2.5 For any set P ⊂ R2 of N points and for all 2 ≤ k ≤ N , we have

|Gk ∩ T | ≤ 2N3k−2 .

Proof First, we notice that if g is a translation, then g(x) = x + v, for some v ∈ R2 and if
(p, q, r, s) ∈ E−1(g), then p+ v = r and q + v = s, hence r − p = s− q. So if we define

QT (P) := E−1(T ) = {(p, q, r, s) ∈ Q(P) : r − p = s− q} ,

we note that |QT (P)| ≤ N3, because if (p, q, r, s) ∈ QT (P), s is uniquely determined by p, q
and r (in fact s = r − p+ q).

Using lemma 2.3, and proceeding similar as before, we note that

N3 ≥ |QT (P)| =
∑
g∈T
|E−1(g)| =

N∑
j=2

|G=j ∩ T | · j(j − 1)

≥
N∑
j=k

|G=j ∩ T | · j(j − 1)

≥ k(k − 1) ·
N∑
j=k

|G=j ∩ T | = k(k − 1)|Gk ∩ T |

Hence

|Gk ∩ T | ≤
N3

k(k − 1)
≤ 2N3

k2
.
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Let G′ = G \ T . Therefore we want to show |Gk ∩ G′| . N3k−2. We observe that G′ can be
viewed as a set of rotations about a unique fixed point (x, y) ∈ R2 by a unique angle θ ∈ (0, 2π)
(the angle 0 is excluded because the identity rigid motion was accounted as a translation).
Hence we have the bijection ρ : G′ → R3 defined by

ρ(g) = (x, y, cot(θ/2)) ,

where (x, y) is the unique fixed point of g and θ is the angle of rotation.

We want to justify this definition. Denote

Spq = {g ∈ G : g(p) = q}

which is the set of all positively-oriented rigid motions sending p to q. We will show that the
set Spq ∩G′ is sent by ρ to a line in R3. This will allow to transform our problem in a problem
about incidences about lines in R3.

Lemma 2.6 Let p = (px, py) and q = (qx, qy) be two points in R2 (not necessarily distinct).
Then ρ(Spq ∩G′) is a line in R3 which can be parameterised as

l =

{(
px + qx

2
,
py + qy

2
, 0

)
+ t

(
qy − py

2
,
px − qx

2
, 1

)
: t ∈ R

}
(1)

Proof We note that the fixed point of any rotation sending p to q must lie on the perpendicular
bisector of p and q.

Let r be a point on the perpendicular bisector of p and q. Then

r =

(
px + qx

2
+ t

qy − py
2

,
py + qy

2
+ t

px − qx
2

)
for some t ∈ R. Then there is a unique rotation centered at r which sends p to q. Call it gr.
Say θ is the angle of this rotation. Then, by definition of cot(θ/2), we obtain

cot(θ/2) =

∣∣r − p+q
2

∣∣∣∣p−q
2

∣∣ =

t

((
qy−py

2

)2
+
(px−qx

2

)2)1/2

((px−qx
2

)2
+
(
py−qy

2

)2)1/2
= t .

So indeed we obtain that

ρ(gr) =

(
px + qx

2
+ t

qy − py
2

,
py + qy

2
+ t

px − qx
2

, t

)
,

which gives us the desired result.
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For any two points p, q ∈ R2, denote

Lpq = ρ(Spq ∩ R2) .

We now state and prove some easy facts about these lines.

Lemma 2.7 For any 4 points p, q, r and s in R2, the lines Lpq and Lrs coincide if and only if
p = r and s = q.

Proof Using the parameterisation given by (1), we note that if Lpq = Lrs = l, first by looking

at the intersection of l with the plane z = 0, we obtain
(
px+qx

2 ,
py+qy

2 , 0
)

=
(
rx+sx

2 ,
ry+sy

2 , 0
)

.

It follows that
(
qy−py

2 , px−qx2 , 1
)

=
(
sy−ry

2 , rx−sx2 , 1
)

, hence p = r and s = q.

Lemma 2.8 If p, q, r ∈ R2 such that q 6= r, then the lines Lpq and Lpr are skew.

Proof Suppose we have a point a ∈ Lpq ∩ Lpr. Say a = (a1, a2, a3). Then, by looking at (1),
we have that

a1 =
px + qx

2
+ a3

qy − py
2

=
px + rx

2
+ a3

ry − py
2

a2 =
py + qy

2
+ a3

px − qx
2

=
py + ry

2
+ a3

px − rx
2

This implies that

qx + a3qy = rx + a3ry

qy − a3qx = ry − a3rx

Hence qx = rx and qy = ry, hence q = r.

Also, if Lpq and Lpr are parallel, then they must have the same direction, so again the param-
eterisation (1) implies that(

qy − py
2

,
px − qx

2
, 1

)
=

(
ry − py

2
,
px − rx

2
, 1

)
,

hence q = r.

Let a ∈ R2 be a point. We denote

La := {Lap : p ∈ R2} .

We’ve just seen that La is a set of pairwise-skew lines.

Lemma 2.9 Fix a point a ∈ R2. Then every point in R3 belongs to exactly one line in La.
Moreover, we can construct a vector field

V = (V1(x, y, z), V2(x, y, z), V3(x, y, z))

on R3 which is tangent at every point to the unique line in La and each of the coefficients V1,
V2 and V3 are polynomials of degree at most 2.

Proof Let (x, y, z) be a point in R3. We want to check it lies in exactly one line of La. Using
(1), (x, y, z) belongs to the line Lap if and only if for some t ∈ R, we have that(

ax + px
2

,
ay + py

2
, 0

)
+ t

(
py − ay

2
,
ax − px

2
, 1

)
= (x, y, z) .
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We note that we must have t = z, and the following equations must hold:

px + zpy = 2x− ax + ayz

−zpx + py = 2y − ay − axz

We treat ax and ay as constants. Hence we obtain

px =
2x− ax + ayz − 2yz + ayz + axz

2

1 + z2

py =
2y − ay − axz + 2xz − axz + ayz

2

1 + z2

So indeed we can solve the equation uniquely for px and py, hence (x, y, z) belongs on a unique
line Lap.

Now we define the the vector field

V (x, y, z) = (1 + z2)

(
py − ay

2
,
ax − px

2
, 1

)
=
(
y − ay − axz + xz,−x+ ax − ayz + yz, 1 + z2

)
which is tangent to the direction of Lap and each component is a polynomial of degree 2.

We now put together all the information we have acquired so far. Recall that our goal was to
prove that |Gk ∩ G′| . N3k−2. Let L = {Lpq : p, q ∈ P}, which by lemma 2.7 is a set of N2

distinct lines in R3.

Let g ∈ Gk∩G′. Then there exists a set of k distinct points {q1, . . . , qk} ⊂P∩gP. Denote

pi = g−1(qi) ,

for all 1 ≤ i ≤ k. As g is a rigid motion, then all pi’s are distinct. By definition,

g ∈ Spigi ∩G′ , for all i.

Hence ρ(g) belongs to all lines Lpigi . So if g ∈ Gk ∩G′, then ρ(g) belongs to at least k lines in
L . This means it would be enough to show there are . N3k−2 points which belong to at least
k lines in L . Also note that lemma 2.8 implies that a plane contains at most N lines of L .
Indeed, suppose there exists a plane that contains more than N lines of L . Then we can find
p, q, r ∈ P with q 6= r such that Lpq and Lpr belong to the same plane, which is a contradiction
to lemma 2.8.

Indeed, we will prove the following theorem:

Theorem 2.10 Let L be a set of N2 lines in R3 such that any plane contains at most N of
the lines in L and let 3 ≤ k ≤ N . Then there exists an universal constant C such that the
number of points that belong to at least k lines in L is at most CN3k−2.

The proof of this theorem will be the objective of section 5. Note that in the statement of the
theorem we have assumed that k ≥ 3. This is because the statement for k = 2 is not necessarily
true. We will see later that it is possible to have N2 lines in R3 with no N in any plane such
that the number of intersections between them is ∼ N4. Hence in order to obtain a result about
the case k = 2, we will have to make one extra assumption about the set L . We will later show
that it also holds that L contains . N lines in any regulus. A regulus is a doubly-ruled surface
of degree 2. We will properly define reguli, discuss some properties of them later in the paper.
We will prove the following theorem:

11
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Theorem 2.11 Let L be a set of N2 lines in R3 such that any plane contains at most N lines
of L and any regulus at most O(N) of lines in L . Then the number of points of intersection
between the lines in L is . N3.

Hence, if we assume theorems 2.10 and 2.11 hold, we obtain that |Gk ∩G′| . N3k−2, which in
turn implies Q(P) . N3 logN , as we’ve seen earlier. In the rest of the paper we will develop
methods to prove these 2 theorems.

12
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3 Algebraic geometry preliminaries

3.1 Zero set of polynomials

In this subsection we will look at some classical results about polynomials we will repeatedly
use in the sections to follow. In some sense, these kind of results are the basis of the theory we
are going to build on.

We begin by recalling some 3 veriations of the classical Bézout theorem.

Lemma 3.1 (Bézout) Let P ∈ R[x1, . . . , xn] be a polynomial of degree d and let l be a line in
Rn. Then if |Z(P ) ∩ l| > d, then l ⊂ Z(P ).

Proof Say l = {a+ tv : t ∈ R}, where v if the direction of l. Denote

Q(t) = P (a+ tv) .

Then Q is a one dimensional polynomial of degree d. If |Z(P )∩ l| > d, it means that Q vanishes
at more than d values of t. Hence Q ≡ 0, which means that P vanishes on l.

Remark Informally, the lemma above means that if a polynomial of degree vanishes in more
than d points of a line, then the line must be included in the algebraic surface Z(P ).

Theorem 3.2 (Bézout) Let P,Q ∈ R[x, y] be non-zero polynomials of degrees m and n re-
spectively. If there are more than mn points in R2 where both P and Q vanish, then P and Q
have a common factor.

Also, we would like to highlight the 3-dimensional version of this theorem:

Theorem 3.3 (Bézout) Let P,Q ∈ R[x, y, z] be non-zero polynomials of degrees m and n
respectively. If there are at least mn+ 1 different lines in R3 on which P and Q simultaneously
vanish, then P and Q have a common factor.

We will not provide proofs for the previous two theorems, as they are classical results which can
be found in any first course in algebraic geometry. The proofs are rather tedious and outside
the scope of this report.

Next, we would like to show that if we are given N points in Rn, we can find a non-zero
polynomial of ”low” degree such that all N points are contained in the zero set of the polynomial.
We begin with the following crude bound:

Lemma 3.4 Let S be a set of N points in Rn. Then if N <
(
n+d
d

)
, for some integer d, then

there exists a non-zero polynomial P ∈ R[x1, . . . , xn] of degree at most d that vanishes on all
the points of S.

Proof Let V be the vector space of polynomials in R[x1, . . . , xn] of degree at most d, which
has dimension m =

(
n+d
d

)
over R. A basis for V is formed by monomials of the form

xα1
1 xα2

2 . . . xαn
n where α1 + . . . αn ≤ d .

Call this monomials P1, . . . Pm. Say S = {a1, . . . , aN} is our set of N points in Rn, with N < m.
For 1 ≤ i ≤ m, define vi ∈ RN by

vi = (Pi(a1), Pi(a2), . . . , Pi(aN )) .

So we have a set of m vectors in RN and m > N , so these vectors are not linearly independent,
so there exists γ1, . . . , γm ∈ R, not all 0, such that

m∑
i=1

γivi = 0 .

13



3.1 Zero set of polynomials Part III essay Petru Constantinescu

Denote P = γ1P1 + · · · + γmPm. Then clearly P (aj) = 0, for all 1 ≤ j ≤ N and P has degree
at most d.

From now on, we focus on trivariate polynomials P ∈ R[x, y, z]. We would like to obtain a
similar result as in the previous lemma, but for lines.

Lemma 3.5 Let L be a set of N lines in R3. Then there exists a non-zero trivariate polynomial
of degree at most 4N1/2 that vanishes on each line.

Proof Let d be a number we will choose later. Choose d+ 1 points on each line in L . Hence
using lemma 3.4, if

(
d+3
3

)
> (d + 1)N , then we find a non-zero polynomial of degree ≤ d that

vanishes on on d+ 1 points of each line in L, so by using lemma 3.1, it would vanish on all the
lines in L . Since

(
d+3
3

)
> d3

6 , it is enough to check that d3

6 > 2dN , which is clearly true for

d = 4N1/2.

Next we study the conditions under which a line is contained in the zero set of a polyno-
mial.

Let P be a trivariate polynomial of degree d. We have the Taylor expansion

P (x, y, z) =
∑
i,j,k≥0
i+j+k≤d

1

i!j!k!
(x1 − a1)i(y − a2)j(z − a3)k

∂i+j+kP

∂xi∂yj∂zk
(a1, a2, a3) (2)

It would be useful to define the t-th order of this expansion, for all 1 ≤ t ≤ d. Therefore we
define the following polynomials in 6 variables:

Pt(x,v) = Pt(x1, x2, x3, v1, v2, v3) =
∑
i,j,k≥0
i+j+k=t

1

i!j!k!
vi1v

j
2v
k
3

∂i+j+kP

∂xi∂yj∂zk
(x, y, z) (3)

for all 1 ≤ t ≤ d. For example,
P1(a, v) = ∇P (a) · v

and

P2(a, v) =
1

2
vTHP (a)v ,

where HP (a) is the Hessian matrix evaluated at a.

HP (a) =

Pxx(a) Pxy(a) Pxz(a)
Pxy(a) Pyy(a) Pyz(a)
Pxz(a) Pyz(a) Pzz(a)


Therefore we can rewrite the Taylor expansion as

P (a+ v) = P (a) +
d∑
t=1

Pt(a, v) (4)

Lemma 3.6 Let P be a polynomial of degree d. Then a line l is contained in Z(P ) if and only
if it is contained to order d at one if its points (i.e. exists a ∈ l such that

P (a) = P1(a,v) = · · · = Pd(a,v) = 0 ,

where v is the direction of l).

14
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Proof Suppose l ⊂ Z(P ). Pick any a ∈ l and let ε > 0 small enough. It follows that

0 = P (a+ εv) = εP1(a,v) + o(ε)

which implies P1(a,v) = 0. Proceed by induction to obtain

0 = P (a+ εv) = εtPt(a,v) + o(εt)

for all 1 ≤ t ≤ d, so the claim follows.

Now suppose there exists a ∈ l such that P (a) = P1(a,v) = · · · = Pd(a,v) = 0. Clearly, for all
t ∈ R, we have

P (a+ tv) = P (a) +
d∑
j=1

tjPj(a,v) = 0 .

3.2 Critical points and flat points

Definition Given a polynomial P ∈ R[x1, . . . , xn], a point a ∈ Z(P ) is called critical if

P (a) =
∂P

∂x1
(a) =

∂P

∂x2
= · · · = ∂P

∂xn
= 0 .

Hence a point a is critical if P (a) = 0 and ∇P (a) = 0. If a ∈ Z(P ) is not critical, it is called
regular. A line is critical if all its points are critical.

Lemma 3.7 Let P a polynomial of degree d. Suppose that a line l contains more than d critical
points of P . Then l is a critical line.

Proof At each critical point a, P (a) = Px1(a) = · · · = Pxn(a) = 0. The proof follows easily
from lemma 3.1. Note that since |Z(P ) ∩ l| > d and deg(P ) = d, we must have l ⊂ Z(P ).
Similarly, by noticing that deg(Pxi) = d − 1, for all 1 ≤ i ≤ n, we get that l ⊂ Z(Pxi). So P
and ∇P vanish simultaneously on l, it follows that l is a critical line for P .

Lemma 3.8 An irreducible trivariate polynomial P of degree d can have at most d(d−1) critical
lines.

Proof This fact follows easily from Bézout’s theorem 3.3. We note that the degree of each
component of ∇P is d− 1, so if Z(P ) and Z(Pxi) have more than d(d− 1) common lines, then
they must have a common factor, which contradicts irreducibility of P .

We can generalise this fact to square-free polynomials.

Lemma 3.9 An square-free trivariate polynomial P of degree d can have at most d(d − 1)
critical lines.

Proof We will proceed by induction on d. If P is irreducible, we are done by the previous
lemma. So suppose P = P1P2, where P1 and P2 are square-free polynomials with no common
factors of degrees d1, respectively d2. Clearly d1, d2 ≥ 1 and d1 + d2 = d.

Let l be a critical line of P . Using Lemma 3.1, we observe that l must be contained in at least
one of Z(P1) or Z(P2) (because P1P2 vanish on l). Also, we note that

∇P = P1∇P2 +∇P1P2 .

So we must be in at least one of the following cases:

1. l ∈ Z(P1) ∩ Z(P2)

15
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2. l is a critical line for P1

3. l is a critical line for P2

Indeed, suppose without losing the generality that l ∈ Z(P1), but l 6∈ Z(P2). Then |l∩Z(P2)| ≤
d2. So ∇P1 vanishes on infinity many points of l, hence l ⊂ Z(∇P1).

We observe that there are at most d1d2 lines in Z(P1)∩Z(P2), as they have no common factor
(again using 3.3). By induction hypothesis, P1 has at most d1(d1− 1) critical lines, and similar
estimate holds for P2. Therefore, the total number of critical lines is at most

d1d2 + d1(d1 − 1) + d2(d2 − 1) ≤ (d1 + d2)(d1 + d2 − 1) = d(d− 1)

We now turn our attention to 3 dimensions.

Definition If a ∈ Z(P ) is a regular point, define πa to be the tangent plane to Z(P ) at a.
Hence

x ∈ πa ⇐⇒ (x− a) · ∇P (a) = 0 .

Lemma 3.10 Let a be a regular point of P such that there exists a line l passing through a
such that P vanishes on l. Then l is contained in πa.

Proof Clearly the directional derivative along l at a is 0. Say

l = {a+ tv : t ∈ R}

for some direction v. Then ∇v(a) = 0. But ∇v(a) = ∇P (a) · v. Hence l is contained in the
tangent plane of P at a.

We now look at the second-order approximation of P ∈ R[x, y, z] at a given by Taylor expan-
sion

Qa(u) = P (a) +∇P (a) · (u− a) +
1

2
(u− a)THP (a)(u− a) (5)

where HP (a) is the Hessian matrix

HP (a) =

Pxx(a) Pxy(a) Pxz(a)
Pxy(a) Pyy(a) Pyz(a)
Pxz(a) Pyz(a) Pzz(a)


Clearly, if a ∈ Z(P ) is a regular point, then for u ∈ πa we have

Qa(u) =
1

2
(u− a)THP (a)(u− a) .

Definition Let a ∈ Z(P ) a regular point. We say a is a flat point of P if Qa vanishes on πa.
We call a line l in R3 flat for a trivariate polynomial P if all the points on l are flat points for
P (with the possible exception of finitely many critical points).

Remark We can regard the definition of a flat point as saying that the second degree approx-
imation of a polynomial at one of its flat points is a plane.

Next we will derive some results about flat lines and points. The next lemma says that if a
point belongs to at least three lines in Z(P ), then it is flat. Intuitively, this suggest why the
study of flat points and lines will be helpful in the study of configurations of points and lines
with many incidences.

Lemma 3.11 Let P be a trivariate polynomial and let a ∈ Z(P ) be a regular point such that it
is contained in three distinct lines on which P vanishes. Then a is a flat point for P .

16
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Proof Let l1, l2, l3 be the three incident lines at a on which P vanishes, and denote v1,v2,
respectively v3 their directions, where |vi| = 1, for i = 1, 2, 3. Lemma 3.10 implies that the
lines l1, l2 and l3 must belong to πa.

First, we check that Qa vanishes on the lines li, for i = 1, 2, 3. We know each li ⊂ πa, hence

P (a) = ∇P (a) · vi = 0 .

Substitute u = a+ εvi (for ε sufficiently small) in the definition of Qa to obtain

0 = P (a+ εvi) = Qa(a+ εvi) + o(ε2) =
ε2

2
vTi HP (a)vi + o(ε2)

So we must have that vTi HP (a)vi = 0 for each i, so indeed Q vanishes on the lines li.

Now take any line l ∈ πa that does not passes through a and is not parallel to any of the li’s.
Because l1, l2 and l3 are distinct and incident at a, then l intersects each li at three distinct
points. But Qa is a degree 2 polynomial and vanishes in at least 3 points of l, so by Bézout’s
theorem we must have l ∈ Z(Qa). This clearly implies πa ⊂ Z(Qa).

The argument above shows that that if Qa vanishes at three points ui = a+ tivi ∈ πa (ti 6= 0),
where vi are distinct, then Qa ≡ 0 on πa. This is because

Qa(ui) = 0⇐⇒ t2iv
T
i HP (a)vi = 0 ⇐⇒ vTi HP (a)vi = 0

so Qa will vanish on the three lines {a + tvi : t ∈ R} and as in the proof of the lemma, this
implies Qa vanish on the whole πa.

This suggests to look at the three points

ui = a+∇P (a)× ei

which clearly belong to πa. We have to assume we are in general position, so that πa is not
parallel to any of the 3 coordinate directions. So our 3 points are distinct and different from
a.

To check that Qa vanishes on the points ui, it is enough to check that

(∇P (a)× ei)THP (a)(∇P (a)× ei) = 0

for i = 1, 2, 3. Now we define the 3 polynomials

Πi(P )(u) = (∇P (u)× ei)THP (u)(∇P (u)× ei) (6)

This are polynomials of degree at most (d− 1) + (d− 2) + (d− 1) = 3d− 4.

Putting everything together, we deduce that if Π1(P )(a) = Π2(P )(a) = Π3(P )(a) = 0, then Qa
will vanish on πa, hence a is flat. We state this fact in the following lemma:

Lemma 3.12 Let P be a trivariate polynomial and a be a regular point for P in general position.
Then a is flat if and only if

Π1(P )(a) = Π2(P )(a) = Π3(P )(a) = 0 .

Proof We have already proved above that if the polynomials Πi(P ) vanish at a regular point
a in general position, then a is flat. For the other direction, assume a flat. Clearly

ui = a+∇P (a)× ei ∈ πa ,

hence Qa(ui) = 0, which is equivalent to Πi(P )(a) = 0. It is interesting to note that for this
direction we don’t have to assume a is in general position.
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Lemma 3.13 Let P be a trivariate polynomial of degree d and l a line in general position (not
parallel to any of the 3 planes given by the coordinates) that contains more than 3d − 4 flat
points for P . Then l is a flat line for P .

Proof The line l contains more than 3d− 4 flat points for P , hence for each i = 1, 2, 3, Πi(P )
vanishes at more than deg(Πi(P )) points of l. Hence, using 3.1, we must have that l ⊂ Z(Πi(P )).
Since l is in general position, it means that all points on it are in general position. Using lemma
3.12, we obtain our conclusion.

We are now ready to provide an upper bound for the number of flat lines for a given polynomial
P which has no linear factors (no planes contained in the zero set). As for the case of critical
lines, we do it first for irreducible polynomials.

Lemma 3.14 An irreducible trivariate polynomial P of degree d > 1 can have at most 3d2−4d
flat lines.

Proof We note that if a is a flat point, then Πi(P )(a) = 0, for i = 1, 2, 3. Assume for
contradiction P has more than 3d2 − 4d flat lines. Using Bézout’s theorem 3.3 again and
noticing that P is irreducible, we obtain that P is a factor of Πi(P ), for all i. This implies that
for all regular points of P in general position, the second-order Taylor approximation is a plane
(with the possible exception of those points for which the tangent plane is parallel to one of the
coordinate axes).

Let a be a regular point of P in general position. Using the Implicit Function Theorem, we can
parameterise Z(P ) in a neighbourhood around a with a map q : R2 → Z(P ), so we have

q(u, v) = (x(u, v), y(u, v), z(u, v))

for (u, v) ∈ U some open set.

Hence we know P ((x(u, v), y(u, v), z(u, v)) = 0, and differentiating with respect to u, we obtain

0 = Pxxu + Pyyu + Pzzu = ∇P (x) · xu

in a neighbourhood around a. Differentiating again with respect to u, we get

0 = Pxxuu + Pyyuu + Pzzuu + (Pxxxu + Pxyyu + Pxzzu)xu+

+ (Pxyxu + Pyyyu + Pyzzu)yu + (Pxzxu + Pyzyu + Pzzzu)zu =

= ∇P (x) · xuu + xTuHP (x)xu

But xu belongs to the tangent plane of Z(P ) at x, so xTuHP (x)xu = 0 because we know the
second-order Taylor approximation vanishes on the tangent plane by assumption (a is in general
position, i.e. πa is not parallel to the coordinate axes, and we can find a neighbourhood around
a such that for all points in the neighbourhood are in general position, so statement holds).
Hence

∇P (x) · xuu = 0

Another way to write the derivative of ∇P (x) · xu = 0 with respect to u is

0 = (∇P (x))u · xu +∇P (x) · xuu = (∇P (x))u · xu

Similarly, we get

(∇P (x))u · xu = (∇P (x))u · xv = (∇P (x))v · xu = (∇P (x))v · xv = 0 .

But xu and xv span the tangent space at x, which means that (∇P (x))u and (∇P (x))v are
perpendicular to the tangent space. Therefore the direction of ∇P (x) does not change, which
means Z(P ) is locally a plane.
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Using irreducibility of P , this implies that Z(P ) is plane, contradicting that the degree of P is
greater than 1.

Lemma 3.15 A square-free trivariate polynomial P with no linear factors has at most 3d2−4d
flat lines.

Proof We proceed by induction on the degree d. If P is irreducible, the claim follows from
the previous proposition. Now suppose P=P1P2, where P1 and P2 are square-free polynomials
with no common factors and none of them with linear factors. Say their degrees are d1, d2
respectively.

We would like to obtain a similar result as in the case of critical line, that is a flat line of P is
either contained in Z(P1)∩Z(P2) or it is a flat line for at least one of P1 or P2. Suppose l is a flat
line on which P1 and P2 don’t vanish simultaneously. So without losing the generality, let a ∈ l
a regular point in general position so that P1(a) = 0 and P2(a) 6= 0 (note that Z(P2) ∩ l ≤ d2)

We have
0 6= ∇P (a) = P1(a)∇P2(a) +∇P1(a)P2(a) = ∇P1(a)P2(a)

Observe that

HP (x) = P1(x)HP2(x) + (∇P1(x)) (∇P2(x))T + (∇P2(x))(∇P1(x))T + P2(x)HP1(x)

Hence for all u ∈ R3, we get

uTHP (a)u = P2(a)uTHP1(a)u+ 2(u · ∇P1(a))(u · ∇P2(a))

Let
ui = ∇P (a)× ei = P2(a)(∇P1(a)× ei)

for i = 1, 2, 3, and by plugging in the equation above, we obtain

Πi(P )(a) = P2(a)3 Πi(P1)(a) .

Since a is flat for P , we have that Πi(P )(a) = 0, for all i, hence Πi(P1)(a) = 0, which means
that a is flat for P1.

We observe that there are at most d1d2 lines in Z(P1)∩Z(P2), as they have no common factor
(again using Bézout). By induction hypothesis, P1 has at most 3d21 − 4d1 flat lines, and similar
estimate holds for P2. Therefore, the total number of critical lines is at most

d1d2 + 3d21 − 4d1 + 3d22 − 4d2 ≤ 3d2 − 4d .

3.3 Ruled surfaces

Let P ∈ R[x, y, z] be a trivariate polynomial of degree d. We say that the surface Z(P ) is ruled
if it contains a line passing through every point. In this section we will discuss some geometric
properties of the ruled surfaces which will turn out to be essential in providing a bound for
number of intersections between lines in the setting of the first section.

Examples of ruled surfaces are planes, cylinders or cones. A ruled surface Z can be informally
described as the set of points swept by a ”moving line”. Formally, a ruled surface has locally a
parametrization g : U → Z such that

g(u, v) = α(u) + vβ(u) , (7)
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where α and β are curves in R3, for some U ⊂ R2 (this means that Z is obtained by sweeping
a line along 2 curves α and β). The set of such lines is called a ruling. Hence a ruling is a set
L of lines in Z such that each point in Z belongs to exactly one line in L .

First, we are going to show that if a surface Z(P ) contains too ”many” lines, then it must have
a ruled factor.

Recall the polynomials P1, P2, . . . Pd, where Pj is the j-th order term of the Taylor expansion
(for 1 ≤ j ≤ d). Using Lemma 3.6, we see that the surface Z(P ) is ruled if and only for every
a ∈ Z(P ), there exists some direction v such that

P1(a,v) = P2(a,v) = · · · = Pd(a,v) = 0 .

We want to provide a weaker condition which characterizes ruled surfaces. Given a trivariate
polynomial P of degree d ≥ 3, we say a point a ∈ Z(P ) is a flecnode if there is a line passing
through it which agrees with the surface up to order 3, i.e. there exists direction v such
that

P (a) = P1(a,v) = P2(a,v) = P3(a,v) = 0 (8)

We would like to give an equivalent condition of flecnode points which does not depend on the
direction v = (v1, v2, v3). We give a sketch proof that there exists a trivariate polynomial which
vanishes on flecnode points. Assume that a is a flecnode point which is not critical (∇P (a) 6= 0),
so suppose without losing the generality that Px(a) 6= 0. The condition P1(a,v) = 0 can be
rewritten as Px(a)v1+Py(a)v2+Pz(a)v3 = 0, so we can write v1 as a linear combination of v2 and
v3. Hence the equations P2(a,v) = 0 and P3(a,v) = 0 can be written as homogeneous equations
in v2 and v3 of degree 2 and 3 respectively. From the equation of degree 2 we get 2 possibilities
for v3 as a linear equation of v2 (i.e. v3 will be v2 multiplied by a rational polynomial which
depends only on derivatives up so second order of P evaluated at a). Plugging these 2 values
into the last equations, we obtain a polynomial Fl(P ) ∈ R[x, y, z] such that v33Fl(P )(a) = 0.
Indeed, this polynomial is zero at a ∈ Z(P ) if and only if there are v1, v2 and v3 such that
P1(a,v) = P2(a,v) = P3(a,v) = 0.

Fl(P ) is called the flecnode polynomial of P . It is not hard to check (but tedious!) that the
degree of Fl(p) is 11d− 24.

The following result is one of the most important results in the theory of ruled surfaces.

Proposition 3.16 Let P be trivariate polynomial. Then the surface Z(P ) is ruled if and only
of Fl(P ) vanishes on Z(P ).

The proof of this statement is beyond the scope of this project. A rigorous proof can be found
in [12]. However, we can remark that one direction is trivial, since if the surface is ruled, there
is a line contained in the surface at every point, so it clearly agrees up to order 3. The other
direction is the more interesting one, which says that it is enough to check that at each point,
a line is contained up to order 3.

The following corollary is important for our purpose.

Corollary 3.17 Let P be a trivariate polynomial of degree d. Suppose that Z(P ) contains more
than 11d2 − 24d lines. Then P has a ruled factor.

Proof We note that Fl(P ) an P vanish simultaneously on more than 11d2 − 24d lines, so by
using Bézout’s Therem 3.3, they must have a common factor Q. We claim that Z(Q) is ruled.

Indeed, for every regular point a ∈ Z(Q), we have Fl(P )(a) = 0, hence there exists a line which
agrees with the surface Z(Q) ⊂ Z(P ) up to order 3. Hence Fl(Q)(a) = 0, so by the previous
proposition Z(Q) is ruled.
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Next we turn attention to some particular types of ruled surfaces. A doubly-ruled surface Z
is a surface in R3 such that any point in Z lies in at least 2 lines contained in the surface.
An example of a doubly-ruled surface is a regulus. A regulus is defined as the union of all the
lines that intersect 3 given pairwise-skew lines l1, l2 and l3. We will next show that reguli are
irreducible doubly-ruled surfaces of degree 2, and later in the section show that all irreducible
ruled surfaces must be either planes, a reguli or singly-ruled.

Lemma 3.18 A regulus is a doubly-ruled irreducible surface of degree 2.

Proof Let R be a regulus and l1, l2 and l3 the three pairwise-skew lines from the definition of
R. We will use an argument similar as in the proof of lemma 3.5. Choose arbitrarily 3 points
on each of the lines l1, l2, l3. There are 9 points in total, and as

(
3+2
2

)
= 10 > 9, then using

lemma 3.4 there exists a non-zero polynomial P of degree at most 2 which vanishes on all these
9 points. This means that P vanishes on at least 3 points of li, for all 1 ≤ i ≤ 3, hence using
lemma 3.1, we obtain that li ⊂ Z(P ), for all i. Hence P has degree 2 and is irreducible, since a
plane contains at most one of the lines l1, l2, l3.

Now let l be a line that intersects l1, l2 and l3. Since the points of intersection must be distinct,
it follows that l has at least 3 intersections with Z(P ), hence l ⊂ Z(P ), so R ⊂ Z(P ).

For the other direction, let a ∈ Z(P ) \ (π12 ∪ π13 ∪ π23), where π12 is the plane containing l1
parallel to l2 and π23, π13 defined similarly. Then there exists a line passing through a and
intersecting l1 and l2, call it l12. So l12 has at least 3 intersections with Z(P ), so l12 ⊂ Z(P ).
Similarly, we find l13, l23 ⊂ Z(P ). Note that if l12 ≡ l13 ≡ l23, then we have found a line passing
through a which intersects l1, l2 and l3, hence a ∈ R. Otherwise, there exist 3 lines in Z(P )
intersecting at a, hence a is flat. Recall that in section 3.2 we showed that if all points of
Z(P ) in a neighbourhood of a are flat, then Z(P ) mush have a planar component, which is a
contradiction. This means we can find a sequence of points an → a such that an ∈ R, which
by continuity implies that a ∈ R. So we’ve shown that almost all points in Z(P ) belong to R
(with the possible exception of 3 curves). Hence the polynomial P is unique.

To see that R is doubly-ruled, it is enough to find two disjoint rulings for R. One ruling L can
be defined as the set of lines which intersect the given lines l1, l2 and l3. Now let l′1, l

′
2, l
′
3 ∈ L

be 3 pairwise-skew lines. Let R′ be the regulus defined by the union of lines which intersect
each of the lines l′1, l

′
2, l
′
3. It is easy to see that R′ = R, because if l′ ⊂ R′, is a line, P vanishes

on at least 3 points of l′ (the intersections with l′i), so l′ ⊂ Z(P ). We now just take the second
ruling L ′ to be the set of lines which intersect l′1, l

′
2 and l′3.

Remark Note that the proof above implies that all doubly-ruled irreducible surfaces of de-
gree 2 are reguli, since we can find 3 pairwise-skew lines in Z(P ) and use them to define the
corresponding regulus.

We now turn out attention to some geometrical aspects of surfaces. We call a point a ∈ Z
exceptional if there are infinitely many lines in the surface that pass through a. For example,
every point in the plane is exceptional, and the apex is the only exceptional point of a cone.

Lemma 3.19 Let P be an irreducible trivariate polynomial and a ∈ Z(P ) an exceptional point.
Then for any other point x ∈ Z(P ), the line which passes through a and x is contained in Z(P ).

Proof Let x ∈ Z(P ). To check whether the line through a and x is contained in Z(P ), it is
enough to check that

P1(x, x− a) = P2(x, x− a) = · · · = Pd(x, x− a) = 0

where d is the degree of P . As a is fixed, Qj(x) := Pj(x, x − a) is a trivariate polynomial, for
all 1 ≤ j ≤ d. If l is a line that passes through a contained in Z(P ), then all Qj vanish on l.
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By assumption, a is exceptional, so P and Qj vanish on infinitely many lines. Using that P is
irreducible and Bézout theorem 3.3, we get that P is a factor of Qj , for all j. So Qj vanish on
all Z(P ), for all j, which implies the claim.

Next, we want to define a similar concept to exceptional points, but for lines. We call a
line l ⊂ Z(P ) exceptional if there are infinitely many lines in Z(P ) which intersect l at non-
exceptional points. This is equivalent of saying that l contains infinitely many non-exceptional
points that belong a different line in Z(P ). Next we prove a lemma similar to the one for
exceptional points.

Lemma 3.20 Let P be an irreducible trivariate polynomial of degree d ≥ 2. Then there exists
an algebraic curve C so that for all x ∈ Z(P )\C, there is a line in Z(P ) passing through x and
intersecting l.

Proof To make the computations easier, suppose without losing the generality that l is the
x-axis (we can achieve this by a change of coordinates). We are going to show that C =
Z(P ) ∩ Z(Px) works. In order to check that C is indeed an algebraic curve, we have to make
sure that P and Px have no common factor. As P is irreducible, the only way this could happen
is if Px ≡ 0, which means P depends only on the variables y and z. So Z(P ) is invariant under
translation in the x-direction. Let l′ be any line in Z(P ) intersecting l, so Z(P ) contains all
translations of l′, so it has a plane as a factor, contradiction.

Now let a be a point in Z(P ) such that Px(a) 6= 0. In particular, ∇P (a) 6= 0. We would like
to find a line in Z(P ) passing through a and intersecting l. We note that any line contained
in Z(P ) that passes through a must be contained in the tangent plane of Z(P ) at a, called πa
(this easy fact is proved in 3.10). Say a = (a1, a2, a3). Then πa ∩ l = (a′, 0, 0), where a′ is such
that

Px(a)(a1 − a′) + Py(a)a2 + Pz(a)a3 = 0 .

Hence

a′ =
Px(a)a1 + Py(a)a2 + Pz(a)a3

Px(a)
.

Therefore, we want to show that for all x = (x, y, z) ∈ Z(P ) such that Px(x) 6= 0, the line
between x and

x′ =

(
Px(x)x+ Py(x)y + Pz(x)z

Px(x)
, 0, 0

)
to be contained in Z(P ). This is equivalent to

P1(x,x− x′) = P2(x,x− x′) = · · · = Pd(x,x− x′) = 0 .

Note that for all 1 ≤ t ≤ d, we have

Pt(x− x′) =
∑
i,j,k≥0
i+j+k=t

1

i!j!k!

(
x− Px(x)x+ Py(x)y + Pz(x)z

Px(x)

)i
yjzk

∂i+j+kP

∂xi∂yj∂zk
(x) .

We can view this as solving for d rational functions of 3 variables which only have a power of
Px(x) in their denominators. Denote by Qj(x) = (Px(x))jPj(x,x−x′), so we need to show that

Q1(x) = Q2(x) = · · · = Qd(x) = 0

for all x ∈ Z(P ) such that Px(x) 6= 0. But we know l is an exceptional line, hence Qj and P
have infinitely many lines in common, so using Bézout’s theorem again, we obtain that P is a
factor of each Qj , which concludes the claim.

The following result will just wrap together the last 2 lemmas into a key result:
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Lemma 3.21 Let P be an irreducible triariate polynomial such that Z(P ) is neither a plane
or a regulus. Then S has at most one exceptional point and at most two exceptional lines.

Proof Suppose a1 and a2 are two exceptional points of Z(P ). Let any point x ∈ Z(P ) not
contained on the line between a1 and a2. Then by Lemma 3.19, x will be contained in at least
two lines of Z(P ), which is a contradiction with Z(P ) not doubly-ruled.

Now, suppose l1, l2 and l3 are three distinct exceptional lines of Z(P ) with the corresponding
curves C1, C2, C3 given by the Lemma 3.20. Assuming Z(P ) is not doubly-ruled, the generic
point x ∈ Z(P ) will be contained in at most one line of Z(P ). Now let x ∈ Z(P )\(C1∪C2∪C3).
Then by the previous lemma we must have that there is a line passing through x that intersects
each of l1, l2 and l3. If any of the li’s are coplanar, it means that Z(P ) contains infinitely many
lines in some plane, so applying again Bézout’s theorem, we derive a contradiction. Similarly,
if l1, l2 and l3 are pairwise skew, then Z(P ) will contain infinitely many lines of a regulus, so
we derive again a contradiction.

Remark Note that this implies that if P irreducible and Z(P ) ruled, then Z(P ) is either a
plane, a regulus or it is singly-ruled.

It is not hard to check that if we have N lines in a plane or in a regulus, it is possible to have
∼ N2 points of intersection. After all this build-up, we are ready to state and prove the main
theorem of this chapter. We will show that planes and reguli are the only surfaces with ”many”
intersections between lines.

Theorem 3.22 Let P be a trivariate polynomial of degree at most d such that Z(P ) is ruled and
has no factors which are planes or reguli. Let L be a set of lines in Z(P ) such that |L| ≤ Cd2,
for some constant C ≥ 1. Then the set of intersections of lines of L has size at most 4Cd3.

Proof Say P = P1P2 . . . Pk, where Pi is irreducible for each 1 ≤ i ≤ k. First we notice that a
point is exceptional for the surface Z(P ) if and only if it is exceptional for at least one of the
Z(Pi) (indeed, a point is exceptional if there are infinitely many lines in Z(P ) passing through
it, so there must be infinitely many lines in one of the irreducible components). Similarly, a
line is exceptional for Z(P ) if and only of it is exceptional for at least on of the Z(Pi). Hence,
using the previous lemma, we obtain there are at most d exceptional points and 2d exceptional
lines. So there are at most 2Cd3 intersections between exceptional lines and lines of L.

We now focus on intersections of non-exceptional lines in L at non-exceptional points. Fix l
a non-exceptional line. Let π be any plane containing l. So Z(P ) ∩ π is an algebraic curve of
degree at most d (as Z(P ) is plane-free). Clearly, l is contained in this algebraic curve. The
other component is a curve C of degree at most d − 1. So Z(P ) ∩ π = l ∪ C. Using Bézout’s
theorem, it is easy to observe the |l ∩ C| ≤ d − 1, otherwise l is contained in C. We would
like to show that if l′ ⊂ Z(P ) is any other non-exceptional line and l ∩ l′ = {a}, where a is
non-exceptional, then a ∈ l ∩ C. This would imply that l has at most d − 1 intersections with
other non-exceptional lines at non-exceptional points, so there are at most Cd3 intersections
between non-exceptional lines of L at non-exceptional points.

In order to prove the claim, fix a point non-exceptional point b ∈ l′ different from a. Fix a small
neighbourhood B around b in Z(P ) . We can choose this neighbourhood such that there is no
exceptional point inside it and can by parameterised as in (7) such that all lines from the ruling
intersect π. So these lines must intersect l∪C in a neighbourhood of a. As a is non-exceptional,
only finitely many of these lines pass through a. Since the set of exceptional points is finite, we
can also arrange such that the intersections of these lines with π contain no exceptional point.
Since l is non-exceptional, only finitely many lines in the ruling can intersect l. Hence all but
finitely many must intersect C. By continuity, this is possible if and only if a ∈ C.
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Putting everything together, we have at most 2Cd3 + Cd2 + d ≤ 4Cd3 intersections between
lines of L.
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4 Polynomial cell decomposition

The goal of this section is to prove that, given a finite set of points in Rn, we can construct a cell
decomposition of Rn such that the walls of the cells are contained in the zero set of a polynomial
of ”low” degree and that each cell contains ”few” of the original points. Of course, in the fol-
lowing pages, everything will be treated carefully and we will obtain some additional important
results. We begin by recalling the classical Borsuk-Ulam and Ham sandwich theorems.

Theorem 4.1 (Borsuk-Ulam) Let T : Sn → Rn be an odd continuous map ( T (x) = −T (−x)
for all x ∈ Rn) . Then there exist x0 ∈ Sn such that T (x0) = 0.

Theorem 4.2 (Ham sandwich theorem) Let B1, B2, . . . , Bn be bounded open measurable
subsets of Rn. Then there exists an hyperplane which bisects each Bi (i.e. there exists
(a0, a1, . . . , an) ∈ Rn+1 such that Bi ∩ {(x1, ..., xn) ∈ Rn : a0 + a1x1 + ... + anxn > 0} and
Bi ∩ {(x1, ..., xn) ∈ Rn : a0 + a1x1 + ...+ anxn < 0} have the same Lebesque measure).

We would like to obtain a generalisation of the Ham sandwich theorem such that each set is
not bisected by a plane (a degree 1 polynomial), but by a polynomial of greater degree.

Theorem 4.3 (Polynomial ham sandwich theorem) Let d ≥ 1 be an integer and B1,
B2, . . . Bm be bounded open sets in Rn, with m <

(
n+d
n

)
. Then there exists a non-trivial polyno-

mial P ∈ R[x1, . . . , xn] of degree at most d such that the algebraic set Z(P ) bisects each Bi (i.e.
Bi ∩ {x ∈ Rn : P (x) > 0} and Bi ∩ {x ∈ Rn : P (x) < 0} have the same Lebesque measure).

Proof Let V be the vector space of polynomials P ∈ R[x1, . . . , xn] of degree at most d, which
has dimension

(
n+d
d

)
over R. Consider the map T : V → Rm defined by

T (P ) :=

(∫
Bi

sign(P )

)m
i=1

which is continuous and odd. We can view this as a map T : R(n+d
d ) → Rm. We can now apply

Borsuk-Ulam theorem (just restrict the map to Sm as m <
(
n+d
d

)
) and see that T (P ) = 0, for

some non-zero P ∈ V , so the claim follows.

We now want to adapt the previous theorem to finite sets of points instead of bounded measur-
able sets.

Lemma 4.4 (Polynomial ham sandwich theorem, discrete case) Let d ≥ 1 an integer
and let S1, S2, . . . , Sm be finite sets of points in Rn, with m <

(
n+d
d

)
. Then there exists a non-

trivial polynomial P ∈ R[x1, . . . , xn] of degree at most d such that the Z(P ) bisects each Bi, in
the sense that {x ∈ Si : P (x) > 0} and {x ∈ Si : P (x) < 0} both have cardinality at most |Si|/2,
for all i.

Proof Let V be the vector space of polynomials P ∈ R[x1, . . . , xn] of degree at most d. For any
δ > 0, we define Bi,δ to be the union of the δ-balls centered at the points of Si. Clearly, these
are open bounded subsets of Rn. Therefore we can apply Theorem 4.3 to obtain a non-zero
polynomial Pδ ∈ V that bisects each Bi,δ.

On V, we look at the sup norm ‖P‖ given by the maximal absolute value of the coefficients of
P . We can assume without losing the generality that ‖Pδ|| = 1, as scaling preserves the zero
set of a polynomial. As V is finite dimensional, we can find a sequence δm → 0 such that Pδm
converges in (V, ‖ · ‖). As V is closed, let P be the limit polynomial and note that ‖P‖ = 1.
In particular, we note that Pδm → P pointwise, and therefore converges uniformly on compact
sets.

We claim that P bisects each set Si. Suppose for contradiction |{x ∈ Si : P (x) > 0}| > |Si|/2,
for some i (the case P < 0 is similar). Let S+

i = {x ∈ Si : P (x) > 0}. Clearly, we can find

25



Part III essay Petru Constantinescu

ε > 0 such that P > ε on all ε-balls around each point of S+
i , as P is continuous and S+

i finite.
Since Pδm converges uniformly on compact sets, we can find N large enough such that δN < ε
and PδN > 0 on the ε-balls around points of S+

i . But this means that PδN > 0 on more than
half of Bi,δN , contradiction.

Remark Using the crude inequality(
n+ d

d

)
>
dn

n!
>
dn

nn

we observe that the previous lemma implies that some finite sets S1, . . . , Sm can be bisected by
a polynomial of degree at most d if dn ≥ nnm, hence those sets can be bisected by a polynomial
of degree at most 2nm1/n.

We are now ready to prove the main result of this section.

Theorem 4.5 (Cell decomposition) Let d ≥ 1 and let S be a finite set of points in Rn.
Then there exists a non-trivial polynomial P ∈ R[x1, . . . , xn] of degree O(d1/n) and a partition

Rn = Z(P ) ∪ Ω1 ∪ · · · ∪ ΩM

with M = O(d) such that each Ωi in an open set with boundary contained in Z(P ) and

|S ∩ Ωi| ≤
|S|
M

,

for all i.

Proof We will prove that when M is a power of 2, then we can find a non-trivial polynomial
of degree ≤ CM1/n (for some universal constant C we will define later in the proof) and cells

Ω1, . . . ,ΩM with boundary contained in Z(P ) such that |S ∩ Ωi| ≤ |S|
M , for all i. This clearly

implies the lemma, as we just choose M to be the least power of 2 greater than d.

Say M = 2k. Using the remark above, we find a polynomial P1 of degree d1 ≤ 2n such that the
finite sets S1 = {x ∈ Rn : P1(x) > 0} ∩ S and S−1 = {x ∈ Rn : P1(x) < 0} ∩ S have cardinality

at most |S|2 . Similarly, we find polynomial P2 of degree d2 ≤ 2n · 21/n that bisects S1 and S−1,
hence the finite sets S(1,1) = S1 ∩ {P2 > 0}, S(1,−1) = S1 ∩ {P2 < 0}, S(−1,1) = S−1 ∩ {P2 > 0}
and S(−1,−1) = S−1 ∩ {P2 < 0} have cardinality at most |S|4 . By iterating the argument, for all

j ≤ k, we find a polynomial Pj of degree at most 2n · 2(j−1)/n such that for all ε ∈ {1,−1}j−1,
the sets defined by S(ε,1) = Sε ∩ {Pj > 0} and S(ε,−1) = Sε ∩ {Pj < 0} have cardinality at most
|S|/2j .

Now, for all ε = (ε1, ε2, . . . , εk) ∈ {1,−1}k, we define the cells

Ωe = {ε1P1 > 0} ∩ {ε2P2 > 0} ∩ · · · ∩ {εkPk > 0}

Then clearly all Ωε are disjoint, S ∩ Ωε = Sε and if we set P = P1P2 . . . Pk, then

Rn = Z(P ) ∪
⋃

ε∈{1,−1}k
Ωε

Now,

deg(P ) =
k∑
j=1

deg(Pj) ≤ 2n
k∑
j=1

2(j−1)/n ≤ 2n

21/n − 1
2k/n =

2n

21/n − 1
M1/n

Take C = 2n
21/n−1 and the claim follows.
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Remark The cells Ωi do not have to be connected. Actually, each cell is the union of some
connected components of Rn \ Z(P ).

If we want to give explicit constants, we can reformulate the theorem as follows:

Theorem 4.6 Let d ≥ 1 and let S be a finite set of points in Rn. Then there exists and a
partition

Rn = Z(P ) ∪ Ω1 ∪ · · · ∪ ΩM

with M ≤ 2d and non-trivial polynomial P ∈ R[x1, . . . , xn] of degree at most 2n·21/n
21/n−1d

1/nsuch

that each Ωi in an open set with boundary contained in Z(P ) and

|S ∩ Ωi| ≤
|S|
d

,

for all i.

We end this section with an application of polynomial cell decomposition. We will prove the
Szeméredi - Trotter theorem, one of the fundamental results in incidence geometry.

Theorem 4.7 (Szeméredi-Trotter) Let P be a finite set of points in and L a finite set of
lines R2. Let I(P,L) := {(p, l) ∈ P × L : p ∈ L}. Then

|I(P,L)| = O(|P |2/3|L|2/3 + |P |+ |L|) .

We first prove an easy lemma which provides a worse bound, but is needed for the proof of the
Szeméredi - Trotter theorem.

Lemma 4.8 For any finite set of points P and finite set of lines L in R2, we have

|I(P,L)| ≤ |P ||L|1/2 + |L| .

Proof Denote by d(l) the number of points on the line l. Then clearly |I(P,L)| =
∑

l∈L d(l) .

Using Cauchy-Schwarz, we obtain(∑
l∈L

d(l)2

)
|L| ≥ |I(P,L)|2 .

We observe that
∑

l∈L d(l)2 is the number of triples (p1, p2, l) ∈ P ×P ×L such that p1 ∈ l and
p2 ∈ l. If p1 6= p2, then there is at most one line in L which contains p1 and p2. Therefore we
obtain ∑

l∈L
d(l)2 ≤ |P |2 + |I(P,L)| .

Therefore,
|I(P,L)|2 − |L||I(P,L)| − |L||P |2 ≤ 0 .

Hence

|I(P,L)| ≤
|L|+

√
|L|2 + 4|L||P |2

2
≤ |L|+ |P ||L|1/2 .

Proof (Szeméredi-Trotter) We apply theorem 4.5 for some parameter d. Then there exists a
non-trivial polynomial Q of degree at most 16d1/2 and a decomposition

R2 = Z(Q) ∪ Ω1 ∪ · · · ∪ Ωm

such that m ≤ 2d and each cell contains at most |P |/d points of P . We can assume without
losing the generality that Q is square-free (removing the repeated factors won’t change the zero
set).
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We now can write

|I(P,L)| = |I(Z(Q) ∩ P,L)|+
m∑
i=1

|I(P ∩ Ωi, L)| . (9)

Denote by Li the set of lines in L which have non-empty intersection with Ωi. It follows that
I(P ∩ Ωi, L) = I(P ∩ Ωi, Li). Applying the previous lemma, we obtain

|I(P ∩ Ωi, Li)| ≤ |P ∩ Ωi||Li|1/2 + |Li| ≤
|P |
d
||Li|1/2 + |Li| . (10)

As we’ve seen in the previous sections, every line not contained in Z(Q) intersects Z(Q) in
at most deg(Q) points. This implies that each line not contained in Z(Q) intersects at most
deg(Q)+1 of the cells in the decomposition, because when a line moves from one cell to another,
it has to pass through Z(Q). Therefore

m∑
i=1

|Li| = |{(l,Ωi) : l ∈ Li, 1 ≤ i ≤ m}| ≤ 16d1/2|L|

(note that by plugging in the constant we obtain in 4.6, we can actually attain that the degree
of Q is less than 15d1/2, so the inequality above clearly holds). By applying Cauchy-Schwarz,
we get

m∑
i=1

|Li|1/2 ≤ m1/2

(
m∑
i=1

|Li|

)1/2

≤ 4
√

2d3/4|L|1/2 .

Putting this together with (9) and (10), we obtain

|I(P,L)| ≤ |I(Z(Q) ∩ P,L)|+ 4
√

2d−1/4|P ||L|1/2 + 16d1/2|L| . (11)

Now we would like to bound |I(Z(Q) ∩ P,L)|. Let L′ be the subset of L of lines contained in
Z(Q) and L′′ = L \ L′. Then each line in L′′ intersects at most 16d1/2 times Z(Q) (again by
Bézout), therefore

|I(Z(Q) ∩ P,L”)| ≤ 16d1/2|L| .

Let P ′ be the subset of Z(Q) ∩ P of critical points (i.e. points p such that ∇Q(p) = 0) and
P ′′ = (P ∩ Z(Q)) \ P ′. Each point in P ′′ belongs to at most one line in Z(Q) (the tangent line
at that point), hence

|I(P”, L′)| ≤ |P | .

It remains to bound |I(P ′, L′)|. As Q is square-free, we observe that the components of ∇Q
and Q have no common factors. Once again, Bézout theorem implies that each line in L′ must
intersect Z(∇Q) at most 16d1/2 times (otherwise Q and ∇Q have a common line), therefore

|I(P ′, L′)| ≤ 16d1/2|L| .

Hence,

|I(Z(Q) ∩ P,L”)| = |I(Z(Q) ∩ P,L”)|+ |I(P”, L′)|+ |I(P ′, L′)| ≤ 32d1/2|L|+ |P | . (12)

Putting together (11) and (12), we obtain

|I(P,L)| ≤ 4
√

2d−1/4|P ||L|1/2 + 48d1/2|L|+ |P | . (13)

All is left to do is find a suitable value for the parameter d. Remember we must have d ≥ 1 in
order to apply theorem 4.5.
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• If |P |2 ≥ |L|, set d = P 4/3L−2/3 to obtain

|I(P,L)| ≤ 4
√

2|P |2/3|L|2/3 + 48d1/2|L|+ |P | ≤ 56|P |2/3|L|2/3 + |P | .

• Otherwise set d = 1 to obtain |I(P,L)| ≤ 56|L|+ |P |.

Therefore, putting everything together,

|I(P,L)| ≤ 56(|P |2/3|L|2/3 + d1/2|L|+ |P |) .

Remark Note that we proved the result in R2, but the same result will hold in Rn by just
taking a generic projection from Rn to R2 such that distinct lines are sent to distinct lines and
distinct points to distinct points.

There is another form of the Szeméredi-Trotter which follows easily from Theorem 4.7 and
which will be useful later.

Theorem 4.9 Let L a finite set of lines R2. Then the number of points which belong to at least
k lines (k ≥ 2) is

O

(
|L|2

k3
+
|L|
k

)
.

Proof Let S denote the number of points belonging to at least k lines. Denote C ≥ 1 a constant
for which Theorem 4.7 holds, i.e. for any finite set P ′ of points and L′ finite set of lines in Rn,
we have

|I(P ′, L′)| ≤ C(|P ′|2/3|L′|2/3 + |P ′|+ |L′|) .

If k ≤ 2C, then there are at most |L|2 intersections between lines of L, so

S ≤ |L|2 ≤ 8C3

(
|L|2

k3

)
.

Otherwise, denote P the set of points which belong to at least k lines and observe that |P | = S
and that |I(P,L)| ≥ kS. Hence Theorem 4.7 implies that

kS ≤ C(S2/3|L|2/3 + S + |L|) .

So
kS ≤ 2C(S2/3|L|2/3 + |L|) ,

as kS > 2CS. Hence at least one of the two following possibilities must hold:

• kS ≤ 4CS2/3|L|2/3, which is equivalent to

S ≤ 64C3 |L|2

k3
.

• kS ≤ 4C|L|, which is equivalent to S ≤ 4C |L|k .

Hence we obtain

S ≤ 64C3

(
|L|2

k3
+
|L|
k

)
.

Remark Looking back at the proof of Szémeredi- Trotter theorem, we can choose C = 64 = 26,
we we obtain

S ≤ 224
(
|L|2

k3
+
|L|
k

)
.
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5 Proof for k = 2

In this section we will prove Theorem 2.11. Recall the setting we have obtained in section 2: we
have a set P ⊂ R2 of N points in plane, and we define the set of lines L = {Lpq : p, q ∈ P},
where Lpq is given by the parameterisation:

Lpq =

{(
px + qx

2
,
py + qy

2
, 0

)
+ t

(
qy − py

2
,
px − qx

2
, 1

)
: t ∈ R

}
.

We have shown that any plane contains at most N lines of L . We would like also to show that
there are at most O(N) lines of L in a regulus. Recall that for a point a ∈ R2 we have defined
La = {Lap : p ∈ R2} and we’ve shown in lemma 2.9 that every point in R3 belongs to exactly
one line in La. Also, we have seen that we can find a vector field

V = (V1(x, y, z), V2(x, y, z), V3(x, y, z))

which is tangent to the unique line in La at every point in R3 and each component is a
polynomial of degree 2. We will first prove the following lemma:

Lemma 5.1 Let R be a regulus that contains at least 7 lines in La. Then there is one ruling of
R which is a subset of La (this means that for each point in R there exists a line in R passing
through it which also belongs to La).

Proof Let P be an irreducible polynomial of degree 2 which defines R. Let Lap be a line
contained in R and v the direction of Lap. For each point b on Lap, we have that V (b) has the
same direction as Lap, hence we obtain

0 = lim
h→0

P (b+ hv)− P (b)

h
= ∇vP (b) = V (b) · ∇P (b) .

This means that V ·∇P vanishes on Lap. As P is a polynomial of degree 2 and each component
of V also has degree 2, we get that V ·∇P has degree at most 3. Now R contains at least 7 lines
of La, which means that P and V · ∇P simultaneously vanish on 7 lines. Noticing that P is
irreducible of degree 2 and using Bézout’s theorem 3.3, we obtain that P is a factor of V · ∇P .
Therefore V · ∇P vanishes on R, hence V is tangent to R at all points of R. So we obtain that
for all points x ∈ R, the unique line in La which passes through x is tangent to R, hence we
obtain a ruling of R consisting of lines in La.

Now we are ready to prove the set of lines L = {Lpq, p, q ∈ P} contains not many lines in a
regulus.

Lemma 5.2 There are at most 8N lines of L in a regulus.

Proof We claim that a regulus R has exactly 2 rulings. If it had at least 3 rulings, then it
contains 3 lines passing through every point of it, hence using the theory we developed in the
section about flat points, we observe that each point of R is flat, so similar to the proof of
lemma 3.14, we must have that a regulus is locally a plane, contradiction.

The previous lemma shows that if a regulus R contains more than 6 lines of Lp, for some p ∈P,
then all lines in one ruling of R must lie in Lp. Hence there are at most 2 points p1, p2 ∈ P
that contain more than 6 lines in R (as Lp1 and Lp2 disjoing by lemma 2.7. These two points
contribute to at most 2N lines of L in R, while the other points contribute with at most 6N .
Therefore R contains at most 8N lines in L .

So now we have showed L satisfies the hypothesis pf theorem 2.11. We are now ready to
proceed with the proof. We will prove the following more general theorem:
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Theorem 5.3 Let L be a set of N2 lines in R3 such that there are at most c1N lines of L in
any plane and at most c2 lines of L in any regulus, for some constants c1, c2. Then there exist
a constant C(c1, c2) such that the number of points of intersections between any two lines in L
is at most CN3.

We will show there exists a constant Q sufficiently large, depending only on c1 and c2, such that
the number of points of intersections of lines in L is less than QN3, for all N . We will give an
explicit value for Q at the end of the proof.

We will proceed by induction on N . Clearly the statement if true for all N ≤ Q, as there are
at most N4 distinct points of intersections between N2 lines, and in this case N4 ≤ QN3. For
induction step, we suppose that for all M < N , if we have a collection of M2 lines in R3 with
at most c1 of them in any plane and at most M2 of them in any regulus, then there are at most
QM3 points of intersections. Suppose for contradiction S = |I(L ,L )| ≥ QN3, where I(L ,L )
denotes the set of intersections between lines in L .

We would like to find a polynomial of bounded degree that contains most of the points of
I(L ,L ). Note that if we were naive and using directly lemma 3.4, then we would obtain a
polynomial of degree bounded by 6S1/3 ≥ Q1/3N , which is too big. We would like to obtain a
polynomial of degree O(N). We will achieve this using a probabilistic method. First we will
observe that it is enough to work with a subset of L consisting of lines with ”many” intersection
points.

Note that we have ≥ QN3 points of intersection between the N2 lines of L . Hence, the for a
line in L , the expected number number of distinct intersection points with other lines in L is
& QN . Denote by L ′ the subset of L consisting of lines which intersect other lines of L in at
least QN

4 points. Hence

|I(L \L ′,L )| ≤ QN3

4
,

so the lines in L ′ participate in at least 3QN3

4 points of intersection. Next denote L ′′ the subset

of L ′ consisting of lines which intersect other lines of L ′ in at least QN
8 points. Hence

|I(L ′ \L ′′,L ′)| ≤ QN

8
|L ′| ≤ QN3

8
.

So

|I(L ′′,L ′′)| ≥ |I(L ,L )| − |I(L \L ′,L )| − |I(L ′ \L ′′,L ′)| ≥ QN3

2
. (14)

Thus we have obtained a subset L ′′ of L such that each line in L ′′ contains ”many” intersection
points with other lines in L ′′ and I(L ′′,L ′′) consists of most of the points in I(L ,L ). Say
|L ′′| = αN2. Now we are ready to apply the probabilistic argument. We need the following
lemma.

Lemma 5.4 Let X ⊂ [n] a random subset such that each element of [n] is included in X
independently with probability p. Then we have

1.
P(|X| ≥ 2pn) ≤ exp

(
−pn

4

)
2.

P
(
|X| ≤ 1

2
pn

)
≤ exp

(
−pn

4

)
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Proof Let

Xi =

{
1 if i ∈ X
0 otherwise

Then Xi are independent Bernoulli random variables with P(Xi = 1) = p and P(Xi = 0) = 1−p.
We can easily see that |X| = X1 + . . . Xn. So we obtain

E (eα|X|) = E

(
n∏
i=1

eαXi

)
=

n∏
i=1

E
(
eαXi

)
= (peα + 1− p)n (15)

Also, Markov’s inequality implies that if α > 0, then

P(|X| ≥ 2pn) ≤ E (eα|X|)
e2αpn

Combining the previous 2 relations and letting α = 1, we obtain

P(|X| ≥ 2pn)e2pn ≤ (pe+ 1− p)ne−2pn

Therefore, in order to prove the first relation, is is enough to show that, for all 0 ≤ p ≤ 1,

pe+ 1− p
e2p

≤ exp
(
−p

4

)
,

which is easy to check.

Foe the second part, whenever α < 0, we have that

P(|X| ≤ (1/2)pn) e2αpn ≤ E (eα|X|) ≤ (peα + 1− p)n

Take α = −1
4 , so it is enough to check that, for all 0 ≤ p ≤ 1,

pe−1/4 + 1− p
e−p/2

≤ exp
(
−p

4

)
,

which is easily verified.

Let’s return to our setting. We form a subset L0 of L ′′ by including each line from L ′′

independently with probability 16
Q . Using the lemma above,

P
(
|L0| ≥

32αN2

Q

)
≤ exp

(
−4αN2

Q

)
≤ exp(−4) ≤ 0.02

Here we used that N ≥ Q and that |L ′′| ≥ N (since otherwise |I(L ′′,L ′′)| ≤ N2, contradiction

with |I(L ′′,L ′′)| ≥ QN3

2 ). So we can assume |L0| ≤ 32αN2

Q .

Recal now that lemma 3.5 stated that for a set B of b lines in R3, we can find a non-zero
polynomial of degree ≤ 4b1/2 which vanishes on all lines in B. Apply this lemma to our setting

to obtain a non-zero polynomial P of degree ≤ 24
√
αN√
Q

which vanishes on every line of L0.

Now fix a line l in L ′′. It contains ≥ QN
8 intersection points with with other lines L ′′. Each

of these points has a probability of at least 16
Q of lying in a line of L0 \ {l}, and the events are

independent. We denote by T the number of distinct points of intersections of l with lines in
L0. So by applying again lemma 5.4, we obtain that

P(T ≤ N) ≤ exp

(
−N

2

)
.
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So the probability that there is at least one line in L ′′ with less than N distinct points of
intersections in L0 is at most exp (−N/2)N2 ≤ 1/2 as long as N ≥ 20. So we find a choice of

L0 such that |L0| ≤ 32αN2

Q and each line in L ′′ has at least N intersections with lines in L0.

As N > 24
√
αN√
Q

, it means that the polynomial P vanishes on every line in L ′′, so on at least

QN3

2 of the points of intersection in L .

So we have found a polynomial of degree O
(
N√
Q

)
which vanishes on at least QN3

2 points of

intersection. We would like to results about the geometry of ruled surfaces we have developed
in the section 3.3 to obtain a contradiction. Factor P = P1P2, where P1 is the product of
irreducible ruled factors of P and P2 the product of of the other irreducible factors. Let d1, d2
be the degrees of P1 and P2 respectively. Denote by L1 = Z(P1)∩L ′′ and L2 = L ′′\L1.

Note that each for any l ∈ L2, l ∩ Z(P1) ≤ d1, since l 6∈ Z(P1). So the number of intersections
between lines of L1 and L2 is at most

|I(L1,L2)| ≤ d1|L2| ≤
24
√
αN√
Q

N2 ≤ N3 .

So thee must be at least QN3

6 intersections either between the lines of L1 or between the lines
of L2. We will treat each case separately.

First we’ll show that lines in L1 cannot have many intersections. Similarly, we factor P1 =
P11P12, where P11 is the product of the irreducible factors which are not planes or reguli and
P12 is the product of planes and reguli. Let L11 = L1 ∩ Z(P11) and L12 = L1 \L11.

A line in L12 meets Z(P11) in at most d11 points (where d11 is the degree of P11), so similarly
the number of intersections between between lines in L11 and L12 is at most N3. Now, theorem
3.22 applied to P11 with d = N implies that there are at most 4N3 intersection points between
lines of L11. Lastly, suppose that P12 is the product of a1 planes and a2 reguli. We know there
are at most c1N lines in a plane, c2N lines in a regulus. Also, it is easy to observe that a line
has at most one intersection with a plane it is not contained in and at most 2 with a regulus it
is not contained in. Hence, the number of intersections of lines in L12 is at most

|I(L12,L12)| ≤ a1c21N2 + a2c
2
2N

2 + (a1 + 2a2)N
2 ≤ QN3

12
,

for Q large enough (as the degree of P12 is a1 + 2a2 ≤ N).

So we must be in the second case. Recall that all lines of L2 belong to Z(P2), where P2 is

a polynomial of degree d2 at most 24
√
αN√
Q

. So using lemma 3.17, we obtain that Z(P2) must

contain at most 11d22 ≤ 104αN2

Q lines. We would like to apply the induction hypothesis for the

set of lines L2. Say (M − 1)2 ≤ |L2| ≤ M2, where M is a positive integer. We can assume
|L2| = M2 (if not, just add some random lines to L2 until its size is a perfect square). So we
can assume

M2 = |L2| ≤ 2 · 104 · αN
2

Q
.

In order to apply the induction hypothesis, we would need to check that there are no more than
c1M lines in any plane c2M lines in any regulus. If this would be true, then we would get that
the number of intersections between in lines in L2 is at most

QM3 ≤ 4 · 106
N3

√
Q
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which is clearly less than QN3

6 for Q large enough.

If we are not lucky enough, then there are planes containing more than c1M lines and reguli
containing more than c2M lines. If there is a plane containing more than c1M lines of L2, we
add them to a subset L21. Similar for a regulus containing more than c2M lines of L2. So L21

consists of lines from at most M
c1

planes and M
c2

reguli. Similar as before, using that any plane
must have of at most c1N lines of L21, a regulus at most c2N , and a line can have at most one
intersection with a plane it is not contained in and at most with 2 a regulus, then the number
of intersections of lines in L21 if at most

|I(L21,L21)| ≤
M

c1
(c1N)2 +

M

c2
(c2N)2 +

(
M

c1
+ 2

M

c2

)
|L21| ≤ N3 .

Denote by L22 = L2 \L21. Since no line in L22 belongs to a plane or regulus corresponding
to L21, then the number of intersections between lines of L21 and L22 is at most

|I(L21,L22)| ≤ |L22|
(
M

c1
+ 2

M

c2

)
≤ N3 .

Now we are almost done. We know that there are at most c1M lines of L22 in a plane and at
most c2M in a regulus. Just add some lines to L22 such that |L22| = M2 and the number of
lines in a plane or a regulus does not increase. So we can apply the induction hypothesis to
obtain at most QM3 intersections of lines in L22. This concludes that the second case must
fail as well, so we have achieved a contradiction. So the proof is finally complete.

Remark Note that we could take Q = max{2 · 104, 20c21, 20c22} and all the estimates we used
in the proof will hold.
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6 Proof for k ≥ 3

The goal of this section if to prove theorem 2.10. We will rely mainly on methods similar to
those exposed in the section about the polynomial cell decomposition, but we will also use
the geometry of flat and critical points. This suggest why it important that k ≥ 3 separately,
because a flat point of a polynomial P is defined to be a regular point of Z(P ) such that there
are 3 distinct lines in Z(P ) intersecting at it. We will show that there for a given set L of
lines, there exists a polynomial of relatively low degree that contains many of the lines in L
and most of the points where at least k lines of L intersect and use the properties of this
polynomial.

We will prove the following general result.

Theorem 6.1 Let L be a finite set of L lines in R3 such that there are at most B lines in any
plane. Let P be the set of points in R3 that belong to at least k lines in L , for k ≥ 3. Then

|P| = O(L3/2k−2 + LBk−2 + Lk−1) .

Remark Note that if we take L = N2 and B = N , we easily obtain theorem 2.10.

6.1 Regularity adjustments

In this subsection we will show that we can impose some extra conditions and theorem 6.1 will
still hold. We will first show that theorem 6.1 is equivalent to the following weaker form:

Theorem 6.2 Let L be a finite set of L lines in R3 such that there are at most B lines in any
plane. Let P be the set of points in R3 that intersect between k and 2k lines in L , for k ≥ 3.
Then

|P| = O(L3/2k−2 + LBk−2 + Lk−1) .

Indeed, suppose that theorem 6.2 holds. Let P be the set of points that belong to at least k
lines in L . Denote by kj = 2jk and Pj be the set of points that intersect between kj and 2kj
lines in L , for j ≥ 0. Clearly,

P ⊂
⋃
j≥0

Pj .

Also, since theorem 6.2 holds, there exists an universal constant C such that

|Pj | ≤ C(L3/2k−2j + LBk−2j + Lk−1j ) = C

(
1

22j
L3/2k−2 +

1

22j
LBk−2 +

1

2j
Lk−1

)
.

Hence

|Pj | ≤
1

2j
C(L3/2k−2 + LBk−2 + Lk−1) ,

so it follows that

|P| ≤
∑
j≥0
|Pj | ≤

∑
j≥0

1

2j
C(L3/2k−2 + LBk−2 + Lk−1) ≤ 2C(L3/2k−2 + LBk−2 + Lk−1) .

Hence theorem 6.1 can easily be proved assuming theorem 6.2. From now on we work in the
setting of theorem 6.2.

We would like to make an uniformity assumption about the lines. Note that there are ∼ |P|k
incidences between lines in L and points in P. Therefore, the average points from P on a line
from L is ∼ |P|kL . We would like to know there are not too many lines in L which contain to
few points of P. Hence, we propose an even weaker form of 6.2:
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Theorem 6.3 Let L be a finite set of L lines in R3 such that there are at most B lines in
any plane. Let P be the set of S points in R3 that intersect between k and 2k lines in L , for
some k ≥ 3. Also, assume that there are at least (1/8)L lines in L that contain ≥ (1/8)SkL−1

points of P. Then
S = O(L3/2k−2 + LBk−2 + Lk−1) .

We are now going to prove that theorems 6.3 and 6.2 are equivalent, which means we can assume
the extra uniformity condition about the lines.

Lemma 6.4 Theorem 6.3 implies theorem 6.2.

Proof We are going to proceed by induction on the number of lines. Denote by L1 the subset
of lines in L which contain at least 1

8
Sk
L points of P. If |L1| ≥ L/8, by theorem 6.3, there

exist a constant C such that

S ≤ C(L3/2k−2 + LBk−2 + Lk−1) ,

which concludes the proof.

Hence suppose that |L1| ≤ L/8. By assumption, we know that

Sk ≤ |I(P,L )| ≤ 2Sk .

Also, it is easy to see that

|I(P,L \L1)| ≤
1

8

Sk

L
L =

1

8
Sk . (16)

This means that lines in L1 contribute to most of the incidences. We would like to work with
a subset of P such that each point belongs to ”many” lines of L1. This suggests do define
P1 ⊂P the set of points with at least (3/4)k incidences with lines of L1. So a point in P \P1

has at least (1/4)k incidences with lines in L \L1 (as it belongs to at least k lines of L ). Then
we observe the following inequalities:

1

4
k|P \P1| ≤ |I(P \P1,L \L1)| ≤

1

8
|P|k ,

where for the last inequality we used (16). So we know

2|P \P1| ≤ |P| ,

hence it follows that

|P1| ≥
1

2
|P|. (17)

Now, a point in P1 belongs to between (3/4)k and 2k points of L1. We would like to apply the
induction hypothesis for L1, but we encounter a problem as the range of number of intersections
is larger than we considered before. This can be easily fixed by splitting P1 into two parts. Let
P11 ⊂ P1 consist of the points which have between (3/4)k and k incidences with lines in L1

and P12 ⊂ P the points which have between k and 2k incidences with lines in L1. Clearly,
P1 = P11 ∪P12. Denote P2 the larger of the sets P11 and P12. Using (17), we note that

|P2| ≥ (1/4)|P| . (18)

• If P2 = P11, define k2 = d(3/4)ke. Then

k2 ≥ d(3/4)ke ≥ d(3/4) · 3e ≥ 3
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• If P2 = P12, define k2 = k.

So now each point in P2 has between k2 and 2k2 incidences with lines in L1. By induction
hypothesis, it follows that

|P2| ≤ C(|L1|3/2k−22 + |L1|Bk−22 + |L1|k−12 ) (19)

But now we use that |P2| ≥ (1/4)|P| = (1/4)S, |L1| ≤ L/8 and k2 ≥ (3/4)k to obtain

S ≤ 4|P2| ≤ 4C

((
L

8

)3/2(3

4
k

)−2
+

(
L

8

)
B

(
3

4
k

)−2
+

(
L

8

)(
3

4
k

)−1)

≤

(
4 · 1

8

(
4

3

)2
)
C(L3/2k−2 + LBk−2 + Lk−1)

≤ C(L3/2k−2 + LBk−2 + Lk−1)

Hence, the proof is finished.

Remark It is interesting to note that we obtain the same constant in theorem 6.2 as in the
weaker theorem 6.3.

6.2 Rest of the proof

The goal of this chapter is to prove 6.3. Say |P| = S. We want to show that there exists a
universal constant C such that S ≤ C(L3/2k−2 + LBk−2 + Lk−1). We will show that if

S ≥ Q(L3/2k−2 + Lk−1) (20)

for a constant Q large enough, then we will find a plane containg CSk2L−1 lines, for some fixed
constant C. This would imply that S ≤ (1/C) · BLk−2, which implies 6.3. We will give an
explicit value of Q and C for which the argument works.

We begin by showing that if (20) holds, then most of the points in P belong to the zero set of
a polynomial of ”low” degree. The polynomial cell decomposition methods will be essential for
this.

Lemma 6.5 Let L be a finite set of L lines in R3 and P be the set of S points that belong to
at least k lines in L . Also, assume that S ≥ 231(L3/2k−2 +Lk−1). Then there exists a non-zero
polynomial P of degree at most 266L2S−1k−3 such that Z(P ) contains at least (1−2−10)S points
of P.

Proof Let d be a parameter we will choose later. We apply the cell decomposition theorem 4.6
for d3, so we find a non-zero polynomial P of degree at most 30d such that R3 \ Z(P ) can be
partitioned into at most 2d3 cells, each cell containing at most S/d3 points of P. Denote the
cells Ωi, for 1 ≤ i ≤ m, where m ≤ 2d3.

Suppose for contradiction Z(P ) contains less than (1− 2−10)S points of P. This means there
are at least 2−10S points of P in the union of all cells.

Call the cells that contain at least 2−12Sd−3 points of P full cells. Let J ⊂ [m] be the set of
indices of the full cells, i.e.

|Ωi ∩P| ≥ 2−12Sd−3 ⇐⇒ i ∈ J .

Then we have

2−10S ≤
m∑
i=1

|Ωi ∩P| ≤
∑
i∈J

S

d3
+
∑
i 6∈J

1

212
S

d3
≤ |J |Sd−3 + 2d3 · 2−12Sd−3 .
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It follows that |J | ≥ 2−11d3, so there are at least 2−11d3 full cells.

Denote Li ⊂ L be the subset of lines of L that intersect Ωi. Let

L0 = min{|Li| : i ∈ J}

which is the minimum number of lines intersecting any of the full cells. We want to find an
upper bound for L0. In order to do this, look at the pairs

{(l,Ωi) : l ∈ Li, i ∈ J}

We note that any line intersects at most d+1 cells, because every time a line moves from one cell
to another, it must intersect Z(P ). As we’ve seen earlier, if a line has more than d intersections
with Z(P ), then it is included in Z(P ), so has zero intersections with any cell. Hence we obtain
the following inequalities

L0 · 2−11d3 ≤ L0|J | ≤ |{(l,Ωi) : l ∈ Li, i ∈ J}| ≤ L(d+ 1) ≤ 2Ld

so we obtain
L0 ≤ 212Ld−2 .

Next we apply Szémeredi-Trotter theorem (theorem 4.9) for the set of lines Li, where Ωi is the
full cell with the fewest lines. By assumption, each point in P ∩ Ωi belongs to at least k lines
in Li. So we obtain

2−12Sd−3 ≤ 224
(
L2
0

k3
+
L0

k

)
≤ 248(L2d−4k−3 + Ld−2k−1)

Hence

S ≤ 260(L2d−1k−3 + Ldk−1) (21)

In order to get rid of the first term in the bracket, this suggests taking

d = 261L2S−1k−3 . (22)

We first need to check that d ≥ 1. Indeed, we know from Szémeredi - Trotter that

S ≤ 224(L2k−3 + Lk−1) .

But, by assumption S ≥ 231(L3/2k−2 + Lk−1) ≥ 225Lk−1, so 224Lk−1 ≤ S/2, so we must have
S ≤ 225L2k−3. Therefore,

1 ≤ 225L2S−1k−3 ≤ 261L2S−1k−3 = d .

Now, putting together (21) and (22), we obtain

S/2 ≤ 260L3S−1k−4

which implies that
S < 231L3/2k−2 ,

contradiction with the assumption.

So far we’ve shown that if S ≥ Q(L3/2k−2 + Lk−1), for a constant Q large enough, then most
of the points in P will belong to the zero set of a polynomial of degree O(L2S−1k−3). Denote
by P1 = P ∩Z(P ) and by L1 the set of lines in L that are contained in Z(P ). We would like
to show that many of the lines in L belong to L1. First, we will check that the degree d of P
is small enough compared to SkL−1 (which is the approximately the average number of points
in P on a line in L ), if we assume Q in (20) is large enough.
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Lemma 6.6 d < 2−12SkL−1.

Proof Indeed, using the estimates in the previous lemma, it is enough to verify that

266L2S−1k−3 ≤ 2−12SkL−1 ⇐⇒ S2 ≥ 278L3k−4 ⇐⇒ S ≥ 239L3/2k−2

which is true by (20) if Q large enough.

Now we are ready to show that an important ratio of the lines in L lie in Z(P ). The uniformity
assumptions will turn out to be essential in order to achieve this.

Lemma 6.7 |L1| ≥ (1/16)L.

Proof By assumption, there are at least (1/8)L lines in L such that each contain at least
(1/8)SkL−1 points of P. Call the set of such lines L0. We would like to show that most of
these lines belong to L1.

We note that a line in L0 \ L1 contains at least (1/8)SkL−1 points of P, but has less than
2−12SkL−1 with points of P1 (a line which does not belong to Z(P ) has at most d intersections
with Z(P )). So it must have at least (1/16)SkL−1 points of P \P1. Hence

(1/16)SkL−1|L0 \L1| ≤ |I(P \P1,L0 \L1)| ≤ 2k|P \P1| ≤ 2k · 2−10S .

For the middle inequality we used the assumption that each point in P belongs to at most 2k
lines of L .

Therefore we have that
|L0 \L1| ≤ (1/16)L .

This together with out assumption that |L0| ≥ (1/8)L imply that |L0 ∩L1| ≥ (1/16)L.

Let’s recapitulate what we have achieved so far: we have constructed a polynomial of degree
O(L2S−1k−3) that contains at least (1 − 2−10)S points of P and at least (1/16)L lines in L .
We want to use the theory of critical and flat points. Recall that a point in Z(P ) is flat if it is
not critical and belongs to at least 3 different lines in Z(P ). Therefore it is natural to define the
subset P2 ⊂P1 of points that belong to at least 3 different lines in L1. Naturally, as before,
we would like to show that most points in P belong to P2.

Lemma 6.8 |P \P2| ≤ 2−9S.

Proof We note that a point in P1 \P2 lies in at least k lines of L , but at most 2 lines of L1,
so it belongs to at least k − 2 lines in L \L1. Hence the following inequality holds:

(k − 2)|P1 \P2| ≤ |I(P1 \P2,L \L1)| ≤ (2−12SkL−1) · L

For the second inequality, we used that a line in L \L1 intersects Z(P ) at most d times, and
that d ≤ 2−12SkL−12, as seen in lemma 6.6.

Hence

|P1 \P2| ≤ 2−12
k

k − 2
S ≤ 3 · 2−12S ≤ 2−10S

We used, of course, that k ≥ 3. Recall from lemma 6.5 that |P \P1| ≤ 2−10S and that
P2 ⊂P1 ⊂P, so we have

|P \P2| = |P \P1|+ |P1 \P2| ≤ 2−9S .

We would like to show that there are many lines in L that contain ”many” points of P2. Define
L2 ⊂ L be a subset of lines of L such that each line contains at least (1/16)SkL−1 points of
P2.
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Lemma 6.9 |L2| ≥ L/16.

Proof Similar as in the proof of lemma 6.7, a line in L0 \ L2 contains at least (1/8)SkL−1

points of P, but at most 2−12SkL−1 points of P2. Hence

(1/16)SkL−1|L0 \L2| ≤ |I(P \P2,L \L2)| ≤ 2k|P \P2| ≤ (2k) · 2−9S

This implies that

|L0 \L2| ≤ (1/16)L.

Also, from assumption, we know that |L0| ≥ L/8. Combining the last two relations, we obtain
the desired result.

So far we have shown there exists there exists a polynomial of degree O(L2S−1k−3) such that the
subset P2 ⊂P of points of P belonging to at least 3 lines in Z(P )∩L is large enough, in the
sense that |P \P2| ≤ 2−9|P|. Also we have shown that there are many lines in L containing
at least (1/16)SkL−1 points of P2. We are now ready to apply the results from section 3.2
about critical and flat points. In order to do this, we will assume that P is square-free. Note
that by removing the repeating irreducible factors of P , then Z(P ) remains invariant and the
degree of P reduces. So we can make this assumption without losing our generality.

Lemma 6.10 Every line in L2 is either critical or flat.

Proof By definition, every point in P2 is either critical or flat. Also, each line in L2 contains
at least (1/16)SkL−1 points of P2. So each line in L2 contains either (1/32)SkL−1 critical
points or (1/32)SkL−1 flat points. Recall lemmas 3.7 and 3.13, which stated that if a line
contains more than d critical points or more than 3d− 4 flat points, then the line is critical or
flat respectively. Note that for the lemma 3.13 to hold, we need to have all lines in L2 in general
position. We can achieve this easily by a change of coordinates (a ratation of the coordinate
frame will do). Combining this with that fact that d < 2−12SkL−1 gives the required result.

We note that lemma 3.9 implies there are at most d2 critical lines. We would like to show that
d2 is very small compared to L, and this would imply that most lines of L2.

Lemma 6.11 d ≤ (1/16)L1/2.

Proof We know by assumption (20) that S ≥ QL3/2k−2, so 1 ≤ Q−1SL−3/2k2. Using our
estimates from 6.5, we obtain

d ≤ 266L2S−1k−3 ≤ (266L2S−1k−3)(Q−1SL−3/2k2) ≤ 266Q−1L1/2k−1 ≤ (1/16)L1/2

if we assume Q is large enough.

This means that there are at most d2 ≤ (1/256)L critical lines. Since L2 ≥ (1/16)L and each
line in L2 is either critical or flat, it follows that there are at least (1/32)L flat lines in L2.
Recall that lemma 3.15 says that a square-free polynomial P ′ with no factors of degree 1 has
at most 3d′2 flat lines, where d′ = deg(P ′). This suggests to factor our polynomial P = P1P2,
where P1 is the product of linear factors of P , and P2 the product of irreducible factors of P of
degree at least 2.

Note that since ∇P = ∇P1P2 + P1∇P2, it follows that P1 and P2 don’t vanish simultaneously
on a flat line l of P (since otherwise ∇P vanish on l, hence l is critical). So an argument from
the proof of lemma 3.15 shows that if l is a flat line for P , then it must be a flat line for one
of P1 or P2. Indeed, say a ∈ l is a flat point for P such that P1(a) = 0 and P2(a) 6= 0. Then a
belongs to 3 lines in Z(P ), so these lines must belong to Z(P1) (because locally around a, we
have P2 6= 0), hence a is a flat point for P1.
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Now, if we apply lemma 3.15 to the polynomial P2, we obtain that P2 has at most 3d2 ≤ (3/256)L
flat lines. This means that L2 contains at least (1/64)L flat lines of P1. But Z(P1) is a union
of O(L2S−1k−3) planes. So we obtain that many of the lines in L belong to a union of planes.
So we can obtain a bound for the number of lines in a plane, we’re almost finished.

We know d ≤ 266L2S−1k−3 and there are at least (1/64)L lines belonging to at most d planes.
So there must be a plane containing at least 2−72Sk3L−1 lines, so

B ≥ 2−72Sk3L−1 .

This implies that
S ≤ 272BLk−3 .

Recall what we started with: we assumed that S ≥ Q(L3/2k−2 + Lk−1), for a constant large
enough, and we deduced that S ≤ c1BLk−3, for some constant c1 ≤ 272. Hence

S ≤ max{c1, Q}(L3/2k−2 +BLk−3 + Lk−1) .

Note that we can take Q = 240 and all the proofs will work.
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