Distribution of Modular Symbols

Petru Constantinescu

UCL

January 27, 2020

Petru Constantinescu (UCL)

Distribution of Modular Symbols

January 27, 2020 1 / 26

• Hyperbolic plane $\mathbb{H} = \{x + iy | x \in \mathbb{R}, y > 0\}$

- Hyperbolic plane $\mathbb{H} = \{x + iy | x \in \mathbb{R}, y > 0\}$
- Action of $SL_2(\mathbb{R})$ on \mathbb{H} given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$

- Hyperbolic plane $\mathbb{H} = \{x + iy | x \in \mathbb{R}, y > 0\}$
- Action of $SL_2(\mathbb{R})$ on \mathbb{H} given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$
- Hyperbolic metric $ds^2 = \frac{1}{y^2}(dx^2 + dy^2)$

- Hyperbolic plane $\mathbb{H} = \{x + iy | x \in \mathbb{R}, y > 0\}$
- Action of SL₂(\mathbb{R}) on \mathbb{H} given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$ • Hyperbolic metric $ds^2 = \frac{1}{y^2}(dx^2 + dy^2)$

• Volume element
$$d\mu = \frac{1}{y^2} dx dy$$

- Hyperbolic plane $\mathbb{H} = \{x + iy | x \in \mathbb{R}, y > 0\}$
- Action of $SL_2(\mathbb{R})$ on \mathbb{H} given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$
- Hyperbolic metric $ds^2 = \frac{1}{v^2}(dx^2 + dy^2)$
- Volume element $d\mu = \frac{1}{y^2} dx dy$ • Hyperbolic Laplacian $\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$

- Hyperbolic plane $\mathbb{H} = \{x + iy | x \in \mathbb{R}, y > 0\}$
- Action of $SL_2(\mathbb{R})$ on \mathbb{H} given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$
- Hyperbolic metric $ds^2 = \frac{1}{y^2}(dx^2 + dy^2)$
- Volume element $d\mu = \frac{1}{y^2} dx dy$
- Hyperbolic Laplacian $\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$

•
$$\Gamma = \Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \mod N \right\}$$

- Hyperbolic plane $\mathbb{H} = \{x + iy | x \in \mathbb{R}, y > 0\}$
- Action of $SL_2(\mathbb{R})$ on \mathbb{H} given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az+b}{cz+d}$
- Hyperbolic metric $ds^2 = \frac{1}{y^2}(dx^2 + dy^2)$
- Volume element $d\mu = \frac{1}{y^2} dx dy$
- Hyperbolic Laplacian $\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$

•
$$\Gamma = \Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) : c \equiv 0 \mod N \right\}$$

• $\Gamma_0(N)$ acts on $\mathbb{H}^* = \mathbb{H} \cup \mathbb{Q} \cup \infty$. We denote by $X_0(N)$ the quotient surface $\Gamma_0(N) \setminus \mathbb{H}^*$.

Definition

A cusp form of weight k (and level N) is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ such that

• For all
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$
, we have that

$$f(\gamma z) = (cz + d)^k f(z) ;$$

• f 'vanishes at all cusps'.

Definition

A cusp form of weight k (and level N) is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ such that

• For all
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$
, we have that

$$f(\gamma z) = (cz + d)^k f(z) ;$$

• f 'vanishes at all cusps'.

We denote by $S_k(\Gamma_0(N))$ the space of weight k and level N.

Definition

A cusp form of weight k (and level N) is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ such that

• For all
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$
, we have that

$$f(\gamma z) = (cz + d)^k f(z) ;$$

• f 'vanishes at all cusps'.

We denote by $S_k(\Gamma_0(N))$ the space of weight k and level N. We note that if $f \in S_2(\Gamma_0(N))$, then f(z)dz is a $\Gamma_0(N)$ -invariant cuspidal 1-form.

Modular symbols

The cusps for $\Gamma_0(N)$ are parametrized by \mathbb{Q} , so for $r \in \mathbb{Q}$ and $f \in S_2(\Gamma_0(N))$, we define the modular symbol

$$\langle r \rangle = \int_{i\infty}^r f(z) dz$$
.

Modular symbols

The cusps for $\Gamma_0(N)$ are parametrized by \mathbb{Q} , so for $r \in \mathbb{Q}$ and $f \in S_2(\Gamma_0(N))$, we define the modular symbol

$$\langle r \rangle = \int_{i\infty}^r f(z) dz$$
.

The path can be taken to be the vertical line connecting $r \in \mathbb{Q}$ to ∞ .

Modular symbols

The cusps for $\Gamma_0(N)$ are parametrized by \mathbb{Q} , so for $r \in \mathbb{Q}$ and $f \in S_2(\Gamma_0(N))$, we define the modular symbol

$$\langle r \rangle = \int_{i\infty}^r f(z) dz$$
.

The path can be taken to be the vertical line connecting $r \in \mathbb{Q}$ to ∞ .

Petru Constantinescu (UCL)

Distribution of Modular Symbols

Let $f \in S_k(\Gamma)$ be a cusp form of weight k with Fourier expansion at ∞

$$f(z) = \sum_{n \ge 1} a_f(n) n^{(k-1)/2} q^n$$

Let $f \in S_k(\Gamma)$ be a cusp form of weight k with Fourier expansion at ∞

$$f(z) = \sum_{n \ge 1} a_f(n) n^{(k-1)/2} q^n$$

We define the additive twist of L-function associated to f as

$$L(f\otimes e(r),s):=\sum_{n\geqslant 1}rac{a_f(n)e(nr)}{n^s}, \quad ext{for } \operatorname{Re}(s)>1 \;.$$

Let $f \in S_k(\Gamma)$ be a cusp form of weight k with Fourier expansion at ∞

$$f(z) = \sum_{n \ge 1} a_f(n) n^{(k-1)/2} q^n$$

We define the additive twist of L-function associated to f as

$$L(f\otimes e(r),s):=\sum_{n\geqslant 1}rac{a_f(n)e(nr)}{n^s}, \quad ext{for } \mathsf{Re}(s)>1 \;.$$

Let $r = a/c \in \mathbb{Q}$ and $d \in (\mathbb{Z}/c\mathbb{Z})^{\times}$ such that $ad \equiv 1 \mod c$.

Let $f \in S_k(\Gamma)$ be a cusp form of weight k with Fourier expansion at ∞

$$f(z) = \sum_{n \ge 1} a_f(n) n^{(k-1)/2} q^n$$

We define the additive twist of L-function associated to f as

$$L(f\otimes e(r),s):=\sum_{n\geqslant 1}rac{a_f(n)e(nr)}{n^s}, \quad ext{for } \operatorname{Re}(s)>1 \;.$$

Let $r = a/c \in \mathbb{Q}$ and $d \in (\mathbb{Z}/c\mathbb{Z})^{\times}$ such that $ad \equiv 1 \mod c$.

• Completed *L*-function:

$$\Lambda(f \otimes e(r), s) = \left(\frac{c}{2\pi}\right)^{s+1/2} \Gamma(s+1/2) L(f \otimes e(r), s)$$

Let $f \in S_k(\Gamma)$ be a cusp form of weight k with Fourier expansion at ∞

$$f(z) = \sum_{n \ge 1} a_f(n) n^{(k-1)/2} q^n$$

We define the additive twist of L-function associated to f as

$$L(f \otimes e(r), s) := \sum_{n \ge 1} \frac{a_f(n)e(nr)}{n^s}, \quad \text{for } \operatorname{Re}(s) > 1 \;.$$

Let $r = a/c \in \mathbb{Q}$ and $d \in (\mathbb{Z}/c\mathbb{Z})^{\times}$ such that $ad \equiv 1 \mod c$.

• Completed *L*-function: $\Lambda(f \otimes e(r), s) = \left(\frac{c}{2\pi}\right)^{s+1/2} \Gamma(s+1/2) L(f \otimes e(r), s)$ • Functional equation: $\Lambda(f \otimes e(a/c), s) = \Lambda(f \otimes e(-d/c), 1-s)$

Let $f \in S_k(\Gamma)$ be a cusp form of weight k with Fourier expansion at ∞

$$f(z) = \sum_{n \ge 1} a_f(n) n^{(k-1)/2} q^n$$

We define the additive twist of L-function associated to f as

$$L(f \otimes e(r), s) := \sum_{n \ge 1} \frac{a_f(n)e(nr)}{n^s}, \quad \text{for } \operatorname{Re}(s) > 1 \;.$$

Let $r = a/c \in \mathbb{Q}$ and $d \in (\mathbb{Z}/c\mathbb{Z})^{\times}$ such that $ad \equiv 1 \mod c$.

- Completed *L*-function: $\Lambda(f \otimes e(r), s) = \left(\frac{c}{2\pi}\right)^{s+1/2} \Gamma(s+1/2) L(f \otimes e(r), s)$ • Functional equation: $\Lambda(f \otimes e(a/c), s) = \Lambda(f \otimes e(-d/c), 1-s)$
- Period integral representation: $\Lambda(f \otimes e(r), s) = \int_0^\infty f(a/c + iy/c) y^{s+1/2} \frac{dy}{y}$

Let $f \in S_k(\Gamma)$ be a cusp form of weight k with Fourier expansion at ∞

$$f(z) = \sum_{n \ge 1} a_f(n) n^{(k-1)/2} q^n$$

We define the additive twist of L-function associated to f as

$$L(f \otimes e(r), s) := \sum_{n \ge 1} \frac{a_f(n)e(nr)}{n^s}, \quad \text{for } \operatorname{Re}(s) > 1 \;.$$

Let $r = a/c \in \mathbb{Q}$ and $d \in (\mathbb{Z}/c\mathbb{Z})^{\times}$ such that $ad \equiv 1 \mod c$.

Completed L-function: Λ(f ⊗ e(r), s) = (^c/_{2π})^{s+1/2} Γ(s + 1/2)L(f ⊗ e(r), s)
Functional equation: Λ(f ⊗ e(a/c), s) = Λ(f ⊗ e(-d/c), 1 - s)
Period integral representation:

$$\Lambda(f \otimes e(r), s) = \int_0^\infty f(a/c + iy/c) y^{s+1/2} \frac{dy}{y}$$

• Central value: $\langle r \rangle = L(f \otimes e(r), 1/2)$

Let E/\mathbb{Q} be an elliptic curve with associated weight 2 holomorphic cusp form f(z). Let χ be a primitive character mod c. Then

$$\tau(\chi)L(E,\bar{\chi},1) = \sum_{\mathbf{a} \in (\mathbb{C}/c\mathbb{Z})^{\times}} \bar{\chi}(\mathbf{a}) \left\langle \frac{\mathbf{a}}{c} \right\rangle$$

 Let A, B ∈ ℍ* which are Γ-equivalent, i.e. ∃γ ∈ Γ such that B = γ(A). Any smooth path from A to B determines a unique homology class in H₁(X₀(N), ℤ). We denote this homology class by the 'modular symbol' {A, B}.

- Let A, B ∈ Ⅲ* which are Γ-equivalent, i.e. ∃γ ∈ Γ such that B = γ(A). Any smooth path from A to B determines a unique homology class in H₁(X₀(N), ℤ). We denote this homology class by the 'modular symbol' {A, B}.
- We have the surjective group homomorphism $\Phi : \Gamma \to H_1(X_0(N), \mathbb{Z})$ given by $\gamma \mapsto \{A, \gamma A\}$, which is independent of $A \in \mathbb{H}^*$.

- Let A, B ∈ Ⅲ* which are Γ-equivalent, i.e. ∃γ ∈ Γ such that B = γ(A). Any smooth path from A to B determines a unique homology class in H₁(X₀(N), ℤ). We denote this homology class by the 'modular symbol' {A, B}.
- We have the surjective group homomorphism $\Phi : \Gamma \to H_1(X_0(N), \mathbb{Z})$ given by $\gamma \mapsto \{A, \gamma A\}$, which is independent of $A \in \mathbb{H}^*$.
- The symbol $\{A, B\}$ gives a functional

$$S_2(\Gamma_0(N)) \to \mathbb{C}$$
 via $f \mapsto \int_A^B f(z) dz$

- Let A, B ∈ Ⅲ* which are Γ-equivalent, i.e. ∃γ ∈ Γ such that B = γ(A). Any smooth path from A to B determines a unique homology class in H₁(X₀(N), ℤ). We denote this homology class by the 'modular symbol' {A, B}.
- We have the surjective group homomorphism $\Phi : \Gamma \to H_1(X_0(N), \mathbb{Z})$ given by $\gamma \mapsto \{A, \gamma A\}$, which is independent of $A \in \mathbb{H}^*$.
- The symbol $\{A, B\}$ gives a functional

$$S_2(\Gamma_0(N)) \to \mathbb{C}$$
 via $f \mapsto \int_A^B f(z) dz$

• We can extend the definition of $\{A, B\}$ to points $A, B \in \mathbb{H}^*$ not necessarily Γ -equivalent by identifying $\{A, B\} \in H_1(X_0(N), \mathbb{C})$ with the functional $f \mapsto \int_A^B f(z) dz$.

< /⊒ ► < Ξ ► <

•
$$\{A, A\} = 0;$$

Petru Constantinescu (UCL)

- ∢ /⊐ >

э

3

• • • • • • • • • •

•
$$\{A, A\} = 0;$$

•
$$\{A, B\} + \{B, A\} = 0;$$

•
$$\{A, B\} + \{B, C\} + \{C, A\} = 0;$$

- ∢ /⊐ >

•
$$\{A, A\} = 0;$$

•
$$\{A, B\} + \{B, A\} = 0;$$

•
$$\{A, B\} + \{B, C\} + \{C, A\} = 0;$$

•
$$\{\gamma A, \gamma B\} = \{A, B\}$$
, for all $\gamma \in \Gamma$;

- ∢ /⊐ >

•
$$\{A, A\} = 0;$$

•
$$\{A, B\} + \{B, A\} = 0;$$

•
$$\{A, B\} + \{B, C\} + \{C, A\} = 0;$$

•
$$\{\gamma A, \gamma B\} = \{A, B\}$$
, for all $\gamma \in \Gamma$;

•
$$\{A, \gamma A\} = \{B, \gamma B\}$$
, for $A, B \in \mathbb{H}^*$;

- ∢ /⊐ >

•
$$\{A, A\} = 0;$$

• $\{A, B\} + \{B, A\} = 0;$
• $\{A, B\} + \{B, C\} + \{C, A\} = 0;$
• $\{\gamma A, \gamma B\} = \{A, B\}, \text{ for all } \gamma \in \Gamma;$
• $\{A, \gamma A\} = \{B, \gamma B\}, \text{ for } A, B \in \mathbb{H}^*;$
• $\{A, \gamma A\} \in H_1(X_0(N), \Gamma)$.

Petru Constantinescu (UCL)

•
$$\{A, A\} = 0;$$

• $\{A, B\} + \{B, A\} = 0;$
• $\{A, B\} + \{B, C\} + \{C, A\} = 0;$
• $\{\gamma A, \gamma B\} = \{A, B\}, \text{ for all } \gamma \in \Gamma;$
• $\{A, \gamma A\} = \{B, \gamma B\}, \text{ for } A, B \in \mathbb{H}^*;$
• $\{A, \gamma A\} \in H_1(X_0(N), \Gamma)$.

Integration defines a pairing

$$\langle,\rangle: S_2(\Gamma_0(N)) \times H_1(X_0(N),\mathbb{Z}) \to \mathbb{C}$$

 $\langle f, \mathcal{C} \rangle = \int_{\mathcal{C}} f(z) dz$

•
$$\{A, A\} = 0;$$

• $\{A, B\} + \{B, A\} = 0;$
• $\{A, B\} + \{B, C\} + \{C, A\} = 0;$
• $\{\gamma A, \gamma B\} = \{A, B\}, \text{ for all } \gamma \in \Gamma;$
• $\{A, \gamma A\} = \{B, \gamma B\}, \text{ for } A, B \in \mathbb{H}^*;$
• $\{A, \gamma A\} \in H_1(X_0(N), \Gamma)$.

Integration defines a pairing

$$\langle,\rangle: S_2(\Gamma_0(N)) \times H_1(X_0(N),\mathbb{Z}) \to \mathbb{C}$$

 $\langle f, \mathcal{C} \rangle = \int_{\mathcal{C}} f(z) dz$

Theorem

We have an induced perfect pairing

$$\langle,\rangle: S_2(\Gamma_0(N)) \times H_1(X_0(N),\mathbb{R}) \to \mathbb{C}$$

Petru Constantinescu (UCL)

Distribution of Modular Symbols

Mazur-Rubin-Stein conjecture

For $f \in SL_2(\Gamma_0(N))$, we have that f(z + 1) = f(z). From now on we work with the real-valued modular symbol

$$\langle r \rangle = \int_{i\infty}^{r} \operatorname{Re}(f(z)dz).$$

Mazur-Rubin-Stein conjecture

For $f \in SL_2(\Gamma_0(N))$, we have that f(z + 1) = f(z). From now on we work with the real-valued modular symbol

$$\langle r \rangle = \int_{i\infty}^{r} \operatorname{Re}(f(z)dz).$$

It is clear that $\langle r+1 \rangle = \langle r \rangle$. Write the Fourier expansion of f at ∞ as $f(z) = \sum_{n \ge 1} a(n)e(nz)$.
Mazur-Rubin-Stein conjecture

For $f \in SL_2(\Gamma_0(N))$, we have that f(z + 1) = f(z). From now on we work with the real-valued modular symbol

$$\langle r \rangle = \int_{i\infty}^{r} \operatorname{Re}(f(z)dz).$$

It is clear that $\langle r + 1 \rangle = \langle r \rangle$. Write the Fourier expansion of f at ∞ as $f(z) = \sum_{n \ge 1} a(n)e(nz)$.

Conjecture (Mazur-Rubin-Stein)

Fix $x \in [0,1]$ and let

$$G_c(x) = \frac{1}{c} \sum_{0 \leq a/c \leq x} \left\langle \frac{a}{c} \right\rangle$$

Then

$$\lim_{c \to \infty} G_c(x) = \sum_{n=1}^{\infty} \frac{\operatorname{Re}(a(n)(e(nx) - 1))}{n^2} = g(x)$$

Petru Constantinescu (UCL)

Distribution of Modular Symbols

Figure: Plot of $G_c(x)$, c = 1009, for E = 11a

Figure: Plot of $G_c(x)$, c = 10007, for E = 11a

Theorem (Petridis–Risager, 2017)

For $\Gamma_0(q)$, q squarefree. For all $x \in [0, 1]$:

$$\frac{1}{M}\sum_{c\leqslant M}G_c(x)\to g(x)$$

э

Theorem (Petridis–Risager, 2017)

For $\Gamma_0(q)$, q squarefree. For all $x \in [0, 1]$:

$$\frac{1}{M}\sum_{c\leqslant M}G_c(x)\to g(x)$$

Theorem (Diamantis-Hoffstein-Kiral-Lee, 2018)

For all q,

$$G_c(x) = g(x) + O(c^{-1/4}q^{1/4}(cq)^{\epsilon})$$

э

Expectation and Variance

$$E(f,c) := \frac{1}{\phi(c)} \sum_{\substack{a \bmod c \\ (a,c)=1}} \langle a/c \rangle \quad Var(f,c) := \frac{1}{\phi(c)} \sum_{\substack{a \bmod c \\ (a,c)=1}} (\langle a/c \rangle - E(f,c))^2$$

< □ > < 同 > < 回 > < 回 > < 回 >

2

Expectation and Variance

$$E(f,c) := \frac{1}{\phi(c)} \sum_{\substack{a \text{ mod } c \\ (a,c)=1}} \langle a/c \rangle \quad Var(f,c) := \frac{1}{\phi(c)} \sum_{\substack{a \text{ mod } c \\ (a,c)=1}} (\langle a/c \rangle - E(f,c))^2$$

Conjecture (Mazur-Rubin)

There exists a constant C_f and constants $D_{f,d}$ for each divisor d of q such that

$$\lim_{\substack{c \to \infty \\ (c,q)=d}} (Var(f,c) - C_f \log c) = D_{f,d}$$

$$E(f,c) := \frac{1}{\phi(c)} \sum_{\substack{a \bmod c \\ (a,c)=1}} \langle a/c \rangle \quad Var(f,c) := \frac{1}{\phi(c)} \sum_{\substack{a \bmod c \\ (a,c)=1}} (\langle a/c \rangle - E(f,c))^2$$

Conjecture (Mazur-Rubin)

There exists a constant C_f and constants $D_{f,d}$ for each divisor d of q such that

$$\lim_{\substack{c \to \infty \\ c,q) = d}} (Var(f,c) - C_f \log c) = D_{f,d}$$

Theorem (Petridis-Risager, 2017)

$$\frac{1}{\sum_{\substack{c \leqslant M \\ (c,q)=d}} \phi(c)} \sum_{\substack{c \leqslant M \\ (c,q)=d}} \phi(c) (Var(f,c) - C_f \log c) \to D_{f,d}, \quad M \to \infty$$

Petru Constantinescu (UCL)

Distribution of Modular Symbols

January 27, 2020 13 / 26

Plot of Var(E, c) for E = 15A1, gcd(c, 15) = d

47 ▶

Plot of Var(E, c) for E = 11a1 and gcd(c, 11) = 11

Theorem (Petridis-Risager, 2017, after a conjecture of Mazur–Rubin)

 $I \subseteq \mathbb{R}/\mathbb{Z}$ interval with $\lambda(I) > 0$. For d|q set

$$Q_d = \{a/c \in \mathbb{Q}, (a,c) = 1, (c,q) = d\}.$$

Then the values of

$$egin{array}{rcl} Q_d \cap I & o & \mathbb{R} \ rac{a}{c} & \mapsto & rac{\langle a/c
angle}{(C_f \log c)^{1/2}}, \end{array}$$

have limit the standard normal distribution,

Theorem (Petridis-Risager, 2017, after a conjecture of Mazur–Rubin)

 $I \subseteq \mathbb{R}/\mathbb{Z}$ interval with $\lambda(I) > 0$. For d|q set

$$Q_d = \{a/c \in \mathbb{Q}, (a,c) = 1, (c,q) = d\}.$$

Then the values of

$$egin{array}{rcl} Q_d \cap I & o & \mathbb{R} \ rac{a}{c} & \mapsto & rac{\langle a/c
angle}{(C_f \log c)^{1/2}}, \end{array}$$

have limit the standard normal distribution, i.e. as $X \to \infty$

$$\frac{\left|\left\{\frac{a}{c} \in I, 0 < c < X, \frac{\langle a/c \rangle}{\sqrt{C_f \log c}} \in [A, B]\right\}\right|}{\left|\left\{\frac{a}{c} \in I, 0 < c < X\right\}\right|} \to \frac{1}{\sqrt{2\pi}} \int_A^B e^{-x^2/2} dx$$

Histogram of normalized modular symbols

Histogram of $\{[a/m]_E^+ : E = 11A1, m = 1, 000, 003, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}\}$ 3e5 2e5 1e5 -10 10 < 07 >

January 27, 2020 18 /

э

イロト イヨト イヨト イヨト

Fix $f \in S_2(\Gamma_0(N))$ and work with the real-valued, cuspidal one-form $\alpha = \text{Re}(f(z)dz)$.

Fix $f \in S_2(\Gamma_0(N))$ and work with the real-valued, cuspidal one-form $\alpha = \operatorname{Re}(f(z)dz)$. For any real ϵ , we have a family of unitary characters $\chi_{\epsilon}: \Gamma \to S^1$ given by

$$\chi_{\epsilon}(\gamma) = \exp\left(2\pi i\epsilon \langle \gamma, \alpha \rangle\right) = \exp\left(2\pi i\epsilon \int_{z_0}^{\gamma_{z_0}} \alpha\right)$$

Fix $f \in S_2(\Gamma_0(N))$ and work with the real-valued, cuspidal one-form $\alpha = \operatorname{Re}(f(z)dz)$. For any real ϵ , we have a family of unitary characters $\chi_{\epsilon}: \Gamma \to S^1$ given by

$$\chi_{\epsilon}(\gamma) = \exp\left(2\pi i\epsilon \langle \gamma, \alpha \rangle\right) = \exp\left(2\pi i\epsilon \int_{z_0}^{\gamma_{z0}} \alpha\right)$$

Definition (Eisenstein series twisted by modular symbols)

$$E_{\mathfrak{a}}(z,s,\epsilon) = \sum_{\gamma \in \Gamma_{\mathfrak{a}} \setminus \Gamma} \overline{\chi_{\epsilon}(\gamma)} \operatorname{Im}(\sigma_{\mathfrak{a}}^{-1} \gamma z)^{s}, \quad \operatorname{Re}(s) > 1$$

Petru Constantinescu (UCL)

Distribution of Modular Symbols

Fix $f \in S_2(\Gamma_0(N))$ and work with the real-valued, cuspidal one-form $\alpha = \operatorname{Re}(f(z)dz)$. For any real ϵ , we have a family of unitary characters $\chi_{\epsilon}: \Gamma \to S^1$ given by

$$\chi_{\epsilon}(\gamma) = \exp\left(2\pi i\epsilon \langle \gamma, \alpha \rangle\right) = \exp\left(2\pi i\epsilon \int_{z_0}^{\gamma_{z0}} \alpha\right)$$

Definition (Eisenstein series twisted by modular symbols)

$$\mathsf{E}_{\mathfrak{a}}(z,s,\epsilon) = \sum_{\gamma \in \mathsf{\Gamma}_{\mathfrak{a}} \setminus \mathsf{\Gamma}} \overline{\chi_{\epsilon}(\gamma)} \operatorname{\mathsf{Im}}(\sigma_{\mathfrak{a}}^{-1} \gamma z)^{s}, \quad \operatorname{\mathsf{Re}}(s) > 1$$

$$\begin{split} E_{\mathfrak{a}}(\gamma z, s, \epsilon) &= \chi_{\epsilon}(\gamma) E_{\mathfrak{a}}(z, s, \epsilon) \\ -\Delta E_{\mathfrak{a}}(z, s, \epsilon) &= s(1-s) E_{\mathfrak{a}}(z, s, \epsilon) \; . \end{split}$$

• Fourier expansion

$$E_{\mathfrak{a}}(\sigma_{\mathfrak{b}}z,s,\epsilon) = \delta_{\mathfrak{a}\mathfrak{b}}y^{s} + \phi_{\mathfrak{a}\mathfrak{b}}(s,\epsilon)y^{1-s} + \sum_{n}\phi_{\mathfrak{a}\mathfrak{b}}(s,n,\epsilon)\sqrt{y}K_{it}(2\pi|n|y)e(nx)$$

э

• Fourier expansion

$$E_{\mathfrak{a}}(\sigma_{\mathfrak{b}}z,s,\epsilon) = \delta_{\mathfrak{a}\mathfrak{b}}y^{s} + \phi_{\mathfrak{a}\mathfrak{b}}(s,\epsilon)y^{1-s} + \sum_{n}\phi_{\mathfrak{a}\mathfrak{b}}(s,n,\epsilon)\sqrt{y}K_{it}(2\pi|n|y)e(nx)$$

- $E_{\mathfrak{a}}(z, s, \epsilon)$ and $\phi_{\mathfrak{ab}}(s, \epsilon)$ admit A.C. + F.E.
- $E_{\mathfrak{a}}(z, s, \epsilon)$ and $\phi_{\mathfrak{a}\mathfrak{b}}(s, \epsilon)$ have only finitely many simple poles in the region $\operatorname{Re}(s) > 1/2$, and they are on the interval $1/2 < s \leq 1$ of the real line.

• Fourier expansion

$$E_{\mathfrak{a}}(\sigma_{\mathfrak{b}}z,s,\epsilon) = \delta_{\mathfrak{a}\mathfrak{b}}y^{s} + \phi_{\mathfrak{a}\mathfrak{b}}(s,\epsilon)y^{1-s} + \sum_{n} \phi_{\mathfrak{a}\mathfrak{b}}(s,n,\epsilon)\sqrt{y}K_{it}(2\pi|n|y)e(nx)$$

- $E_{\mathfrak{a}}(z, s, \epsilon)$ and $\phi_{\mathfrak{ab}}(s, \epsilon)$ admit A.C. + F.E.
- $E_{\mathfrak{a}}(z, s, \epsilon)$ and $\phi_{\mathfrak{a}\mathfrak{b}}(s, \epsilon)$ have only finitely many simple poles in the region $\operatorname{Re}(s) > 1/2$, and they are on the interval $1/2 < s \leq 1$ of the real line.
- Let σ be such a pole, then denote $u_{\mathfrak{a},\sigma}(z,\epsilon) = \operatorname{Res}_{s=\sigma} E_{\mathfrak{a}}(z,s,\epsilon)$

• Fourier expansion

$$E_{\mathfrak{a}}(\sigma_{\mathfrak{b}}z,s,\epsilon) = \delta_{\mathfrak{a}\mathfrak{b}}y^{s} + \phi_{\mathfrak{a}\mathfrak{b}}(s,\epsilon)y^{1-s} + \sum_{n}\phi_{\mathfrak{a}\mathfrak{b}}(s,n,\epsilon)\sqrt{y}K_{it}(2\pi|n|y)e(nx)$$

•
$$E_{\mathfrak{a}}(z, s, \epsilon)$$
 and $\phi_{\mathfrak{ab}}(s, \epsilon)$ admit A.C. + F.E.

- $E_{\mathfrak{a}}(z, s, \epsilon)$ and $\phi_{\mathfrak{a}\mathfrak{b}}(s, \epsilon)$ have only finitely many simple poles in the region $\operatorname{Re}(s) > 1/2$, and they are on the interval $1/2 < s \leq 1$ of the real line.
- Let σ be such a pole, then denote $u_{\mathfrak{a},\sigma}(z,\epsilon) = \operatorname{Res}_{s=\sigma} E_{\mathfrak{a}}(z,s,\epsilon)$
- $u_{\mathfrak{a},\sigma} \in L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ and it satisfies $(\Delta + \sigma(2 \sigma))u_{\mathfrak{a},\sigma}(\cdot, \epsilon) = 0$.

• Denote by $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ the space of square integrable functions on $\Gamma \setminus \mathbb{H}$ with respect to the hyperbolic metric, satisfying $f(\gamma z) = \chi_{\epsilon}(\gamma)f(z)$.

- Denote by $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ the space of square integrable functions on $\Gamma \setminus \mathbb{H}$ with respect to the hyperbolic metric, satisfying $f(\gamma z) = \chi_{\epsilon}(\gamma)f(z)$.
- $-\Delta$ is a symmetric and positive operator acting on $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$.

- Denote by $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ the space of square integrable functions on $\Gamma \setminus \mathbb{H}$ with respect to the hyperbolic metric, satisfying $f(\gamma z) = \chi_{\epsilon}(\gamma)f(z)$.
- $-\Delta$ is a symmetric and positive operator acting on $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$.
- The spectrum of $-\Delta$ is discrete, with eigenvalues $0 \leq \lambda_0(\epsilon) \leq \lambda_1(\epsilon) \leq \cdots$ satisfying

$$\lim_{n\to\infty}\lambda_n(\epsilon)=\infty \text{ and } \sum_{n=1}^\infty\lambda_n(\epsilon)^{-2}<\infty.$$

- Denote by $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ the space of square integrable functions on $\Gamma \setminus \mathbb{H}$ with respect to the hyperbolic metric, satisfying $f(\gamma z) = \chi_{\epsilon}(\gamma)f(z)$.
- $-\Delta$ is a symmetric and positive operator acting on $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$.
- The spectrum of $-\Delta$ is discrete, with eigenvalues $0 \leq \lambda_0(\epsilon) \leq \lambda_1(\epsilon) \leq \cdots$ satisfying

$$\lim_{n\to\infty}\lambda_n(\epsilon)=\infty \text{ and } \sum_{n=1}^\infty\lambda_n(\epsilon)^{-2}<\infty.$$

• If s>1/2 pole of $E_{\mathfrak{a}}(z,s,\epsilon)$, then s(1-s) eigenvalue of $-\Delta$

- Denote by $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ the space of square integrable functions on $\Gamma \setminus \mathbb{H}$ with respect to the hyperbolic metric, satisfying $f(\gamma z) = \chi_{\epsilon}(\gamma)f(z)$.
- $-\Delta$ is a symmetric and positive operator acting on $L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$.
- The spectrum of $-\Delta$ is discrete, with eigenvalues $0 \leq \lambda_0(\epsilon) \leq \lambda_1(\epsilon) \leq \cdots$ satisfying

$$\lim_{n\to\infty}\lambda_n(\epsilon)=\infty \text{ and } \sum_{n=1}^\infty\lambda_n(\epsilon)^{-2}<\infty.$$

• If s>1/2 pole of $E_{\mathfrak{a}}(z,s,\epsilon)$, then s(1-s) eigenvalue of $-\Delta$

• $\Delta \subset L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ is unitary equivalent to $L(\epsilon) \subset L^2(\Gamma \setminus \mathbb{H})$, where $L(\epsilon)h = \Delta h - 4\pi i\epsilon \langle dh, \alpha \rangle - 4\pi^2 \epsilon^2 \langle \alpha, \alpha \rangle h$ • $\Delta \subset L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ is unitary equivalent to $L(\epsilon) \subset L^2(\Gamma \setminus \mathbb{H})$, where $L(\epsilon)h = \Delta h - 4\pi i\epsilon \langle dh, \alpha \rangle - 4\pi^2 \epsilon^2 \langle \alpha, \alpha \rangle h$

•
$$\lambda_0(\epsilon) = 0 \iff \epsilon = 0$$

• $\Delta \subset L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ is unitary equivalent to $L(\epsilon) \subset L^2(\Gamma \setminus \mathbb{H})$, where

$$L(\epsilon)h = \Delta h - 4\pi i\epsilon \langle dh, \alpha \rangle - 4\pi^2 \epsilon^2 \langle \alpha, \alpha \rangle h$$

•
$$\lambda_0(\epsilon) = 0 \iff \epsilon = 0$$

• $\lambda_0(\epsilon), E_{\mathfrak{a}}(z, s, \epsilon), \phi_{\mathfrak{ab}}(s, \epsilon)$ real analytic in ϵ

• $\Delta \subset L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ is unitary equivalent to $L(\epsilon) \subset L^2(\Gamma \setminus \mathbb{H})$, where

$$L(\epsilon)h = \Delta h - 4\pi i\epsilon \langle dh, \alpha \rangle - 4\pi^2 \epsilon^2 \langle \alpha, \alpha \rangle h$$

•
$$\lambda_0(\epsilon) = 0 \iff \epsilon = 0$$

•
$$\lambda_0(\epsilon), E_{\mathfrak{a}}(z, s, \epsilon), \phi_{\mathfrak{ab}}(s, \epsilon)$$
 real analytic in ϵ

•
$$\lambda_0'(0) = 0$$
 and $\lambda_0''(0) = C_\alpha = \frac{4\pi^2 \|\alpha\|^2}{\operatorname{vol}(\Gamma \setminus \mathbb{H})}$

• $\Delta \subset L^2(\Gamma \setminus \mathbb{H}, \chi_{\epsilon})$ is unitary equivalent to $L(\epsilon) \subset L^2(\Gamma \setminus \mathbb{H})$, where

$$L(\epsilon)h = \Delta h - 4\pi i\epsilon \langle dh, \alpha \rangle - 4\pi^2 \epsilon^2 \langle \alpha, \alpha \rangle h$$

•
$$\lambda_0(\epsilon) = 0 \iff \epsilon = 0$$

• $\lambda_0(\epsilon), E_{\mathfrak{a}}(z, s, \epsilon), \phi_{\mathfrak{ab}}(s, \epsilon)$ real analytic in ϵ
• $\lambda'_0(0) = 0$ and $\lambda''_0(0) = C_{\alpha} = \frac{4\pi^2 \|\alpha\|^2}{\operatorname{vol}(\Gamma \setminus \mathbb{H})} \implies \lambda_0(\epsilon) = C_{\alpha}\epsilon^2 + O(\epsilon^3)$
• $s_0(\epsilon) = 1 - C_{\alpha}\epsilon^2 + O(\epsilon^3)$

If \mathcal{Y} is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^{2}/2} dt - \mathbb{P}(\mathcal{Y} < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^{2}/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

If \mathcal{Y} is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^{2}/2} dt - \mathbb{P}(\mathcal{Y} < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^{2}/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

• The Berry-Essen inequality allows us to obtain convergence to the normal distribution by studying the moment generator functions

If $\mathcal Y$ is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^{2}/2} dt - \mathbb{P}(\mathcal{Y} < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^{2}/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

- The Berry-Essen inequality allows us to obtain convergence to the normal distribution by studying the moment generator functions
- $\bullet~$ Let ${\mathcal Y}$ be chosen uniformly at random from

$$\left\{\frac{\langle a/c\rangle}{\sqrt{C_{\alpha}\log c}}, \frac{a}{c} \in Q_d(X)\right\}$$

If $\mathcal Y$ is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^{2}/2} dt - \mathbb{P}(\mathcal{Y} < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^{2}/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

- The Berry-Essen inequality allows us to obtain convergence to the normal distribution by studying the moment generator functions
- Let \mathcal{Y} be chosen uniformly at random from $\begin{cases} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{cases}$

$$\left\{\frac{\langle a/c\rangle}{C_{\alpha}\log c}, \frac{a}{c} \in Q_d(X)\right\}$$

$$\mathbb{E}(\exp(it\mathcal{Y}) = \frac{1}{\#Q_d(X)} \sum_{a/c \in Q_d(X)} \chi_{\epsilon}(\langle a/c \rangle)$$
If $\mathcal Y$ is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^{2}/2} dt - \mathbb{P}(\mathcal{Y} < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^{2}/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

- The Berry-Essen inequality allows us to obtain convergence to the normal distribution by studying the moment generator functions
- Let \mathcal{Y} be chosen uniformly at random from $\left\{\frac{\langle a/\sqrt{a}\right\rangle}{\sqrt{C_{\alpha}}}\right\}$

$$\left\{\frac{a/c}{a\log c}, \frac{a}{c} \in Q_d(X)\right\}$$

 $a/c \in Q_d(X)$

 $\mathbb{E}(\exp(it\mathcal{Y}) = \frac{1}{\#Q_d(X)} \sum_{a/c \in Q_d(X)} \chi_{\epsilon}(\langle a/c \rangle)$ • Related to the poles of the generating series $\sum \frac{\chi_{\epsilon}(\langle a/c \rangle)}{c^{2s}}$

If \mathcal{Y} is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^2/2} dt - \mathbb{P}(X < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^2/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

If \mathcal{Y} is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^2/2} dt - \mathbb{P}(X < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^2/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

• Small t: Both $e^{-t^2/2}$ and $\mathbb{E}(\exp(it\mathcal{Y}))$ are 'very close to 1'

If \mathcal{Y} is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^2/2} dt - \mathbb{P}(X < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^2/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

- Small t: Both $e^{-t^2/2}$ and $\mathbb{E}(\exp(it\mathcal{Y}))$ are 'very close to 1'
- Medium t: $\mathbb{E}(\exp(it\mathcal{Y}))$ is very close to $e^{-t^2/2}$

If \mathcal{Y} is a real valued random variable and T > 0, then

$$\sup_{z \in \mathbb{R}} \left| \int_{-\infty}^{z} e^{-t^2/2} dt - \mathbb{P}(X < z) \right| \ll \frac{1}{T} + \int_{-T}^{T} \left| \frac{e^{-t^2/2} - \mathbb{E}(\exp(it\mathcal{Y}))}{t} \right| dt$$

- Small t: Both $e^{-t^2/2}$ and $\mathbb{E}(\exp(it\mathcal{Y}))$ are 'very close to 1'
- Medium t: $\mathbb{E}(\exp(it\mathcal{Y}))$ is very close to $e^{-t^2/2}$
- Large t: Both $e^{-t^2/2}$ and $\mathbb{E}(\exp(it\mathcal{Y}))$ are 'very small'

$\mathbb{H}^{2} = \{ x + iy | x \in \mathbb{R}, y > 0 \} \quad \mathbb{H}^{3} = \{ z + jy | z \in \mathbb{C}, y > 0 \}$

< A >

э

$$\begin{array}{c|c} \mathbb{H}^2 = \{x + iy | x \in \mathbb{R}, y > 0\} & \mathbb{H}^3 = \{z + jy | z \in \mathbb{C}, y > 0\} \\ \hline SL_2(\mathbb{R}) & SL_2(\mathbb{C}) \end{array}$$

$\mathbb{H}^2 = \{x + iy x \in \mathbb{R}, y > 0\}$	$\mathbb{H}^3 = \{z + jy z \in \mathbb{C}, y > 0\}$
$SL_2(\mathbb{R})$	$SL_2(\mathbb{C})$
Q	K quadratic imaginary number field
$SL_2(\mathbb{Z})$	$SL_2(\mathcal{O}_K)$
Γ ₀ (<i>N</i>)	$\Gamma_0(\mathfrak{n}), \mathfrak{n} \lhd \mathcal{O}_K$ ideal
Cusp forms $f \in S_2(\Gamma_0(N))$	Vector-valued functions $F = (F_1, F_2, F_3)$
$f(\gamma z) = (cz + d)^2 f(z)$	$F(\gamma P) = F(P)j(\gamma; P)$
$\int_0^1 f(z) dx = 0$	$\int_{\mathcal{O}_{\mathcal{K}} \setminus \mathbb{C}} F(z,y) dz = 0$

$\mathbb{H}^2 = \{x + iy x \in \mathbb{R}, y > 0\}$	$\mathbb{H}^3 = \{z + jy z \in \mathbb{C}, y > 0\}$
$SL_2(\mathbb{R})$	$SL_2(\mathbb{C})$
Q	K quadratic imaginary number field
$SL_2(\mathbb{Z})$	$SL_2(\mathcal{O}_{\mathcal{K}})$
$\Gamma_0(N)$	$\Gamma_0(\mathfrak{n}), \mathfrak{n} \lhd \mathcal{O}_K$ ideal
Cusp forms $f \in S_2(\Gamma_0(N))$	Vector-valued functions $F = (F_1, F_2, F_3)$
$f(\gamma z) = (cz + d)^2 f(z)$	$F(\gamma P) = F(P)j(\gamma; P)$
$\int_0^1 f(z) dx = 0$	$\int_{\mathcal{O}_{\mathcal{K}} \setminus \mathbb{C}} F(z,y) dz = 0$
f(z)dz	$F.eta, eta = \left(-rac{dz}{y}, rac{dy}{y}, rac{d\overline{z}}{y} ight)$

$\mathbb{H}^2 = \{x + iy x \in \mathbb{R}, y > 0\}$	$\mathbb{H}^3 = \{z + jy z \in \mathbb{C}, y > 0\}$
$SL_2(\mathbb{R})$	$SL_2(\mathbb{C})$
Q	K quadratic imaginary number field
$SL_2(\mathbb{Z})$	$SL_2(\mathcal{O}_{\mathcal{K}})$
$\Gamma_0(N)$	$F_{0}(\mathfrak{n}), \mathfrak{n} \lhd \mathcal{O}_{K}$ ideal
Cusp forms $f \in S_2(\Gamma_0(N))$	Vector-valued functions $F = (F_1, F_2, F_3)$
$f(\gamma z) = (cz + d)^2 f(z)$	${\sf F}(\gamma{\sf P})={\sf F}({\sf P})j(\gamma;{\sf P})$
$\int_0^1 f(z) dx = 0$	$\int_{\mathcal{O}_{\mathcal{K}} \setminus \mathbb{C}} \mathcal{F}(z,y) dz = 0$
f(z)dz	$F.eta, eta = \left(-rac{dz}{y}, rac{dy}{y}, rac{d\overline{z}}{y} ight)$
$\langle r \rangle = \int_{i\infty}^r \operatorname{Re}(f(z)dz), \ r \in \mathbb{Q}$	$\langle r \rangle = \int_{j\infty}^{r} \operatorname{Re}(F.\beta), \ r \in K$

Theorem (C., 2019)

Let K be a quadratic imaginary field of class number one and $\mathfrak{n} \lhd \mathcal{O}_K$ a square-free ideal with generator $\langle n \rangle = \mathfrak{n}$. For $\mathfrak{b}|\mathfrak{n}$, set

$$\mathcal{Q}_{\mathfrak{b}}(X) = \{ \mathsf{a}/\mathsf{c} \mid \mathsf{a} \in (\mathcal{O}_{\mathcal{K}}/\langle \mathsf{c}
angle)^{ imes}, \langle \mathsf{c}, \mathsf{n}
angle = \mathfrak{b}, \mathsf{0} < |\mathsf{c}| < X \}.$$

Let $F \in S_2(\Gamma_0(\mathfrak{n}))$. Then the data

$$K \cap Q_{\mathfrak{b}}(X) \to \mathbb{R} \quad \frac{a}{c} \mapsto \frac{\langle a/c \rangle}{\sqrt{C_F \log X}}$$

has asymptotically a standard normal distribution.

Theorem (C., 2019)

Let K be a quadratic imaginary field of class number one and $\mathfrak{n} \lhd \mathcal{O}_K$ a square-free ideal with generator $\langle n \rangle = \mathfrak{n}$. For $\mathfrak{b}|\mathfrak{n}$, set

$$\mathcal{Q}_{\mathfrak{b}}(X) = \{ \mathsf{a}/\mathsf{c} \mid \mathsf{a} \in (\mathcal{O}_{\mathcal{K}}/\langle \mathsf{c}
angle)^{ imes}, \langle \mathsf{c}, \mathsf{n}
angle = \mathfrak{b}, \mathsf{0} < |\mathsf{c}| < X \}.$$

Let $F \in S_2(\Gamma_0(\mathfrak{n}))$. Then the data

$$K \cap Q_{\mathfrak{b}}(X) \to \mathbb{R} \quad \frac{a}{c} \mapsto \frac{\langle a/c \rangle}{\sqrt{C_F \log X}}$$

has asymptotically a standard normal distribution. Also, there exists a constant $D_{F,b}$ such that

$$\frac{1}{Q_{\mathfrak{b}}(X)} \sum_{\substack{|c| \leqslant X \\ \langle c, n \rangle = \mathfrak{b}}} |(\mathcal{O}_{\mathcal{K}}/\langle c \rangle)^{\times}| (Var(F, c) - C_{F} \log c) \to D_{F, d}$$