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Abstract

We explore a variety of topics in the analytic theory of automorphic forms. The main

results of this thesis are about the arithmetic statistics of periods of automorphic forms

and the distribution of masses of automorphic forms in the context of Quantum Chaos.

We introduce a new technique for the study of the distribution of modular symbols.

Answering an average version of a conjecture due to Mazur and Rubin for Γ0(N) and

recovering results of Petridis and Risager using a different method, we show that modular

symbols are asymptotically normally distributed, We apply our technique to obtain new

results for congruence subgroups of Bianchi groups. Our novel insight is to use the be-

haviour of the smallest eigenvalue of the Laplace operator for twisted spaces. Our approach

also recovers the first and the second moment of the distribution.

In work joint with Asbjørn Nordentoft, we introduce an automorphic method for

studying the residual distribution of modular symbols modulo primes. We obtain a refine-

ment of a result of Lee and Sun, which solved an average version of another conjecture

of Mazur and Rubin. In addition, we solve the full conjecture in some special cases.

Furthermore, we generalise the results to quotients of general hyperbolic spaces.

Lastly, we obtain a generalisation of the Quantum Unique Ergodicity for holomorphic

cusp forms, as proved by Holowinsky and Soundararajan. We show that correlations of

masses coming from off-diagonal terms dissipate as the weight tends to infinity. This corre-

sponds to classifying the possible quantum limits along any sequence of Hecke eigenforms

of increasing weight.



Impact Statement

The study of modular symbols and quantum chaos lies at the crossroads of various branches

of mathematics: number theory, mathematical analysis, and mathematical physics. Re-

search on modular symbols has a long and rich history, through the work of Manin, the

work of Cremona and LMFDB (L-functions and modular forms database), and the work of

Goldfeld and his students. Quantum Unique Ergodicity is a fast-moving and highly active

area of research within Quantum Chaos, which bridges diverse areas such as geometry,

mathematical physics, dynamics, automorphic forms and arithmetic.

In this thesis we examine some deep questions in number theory, the branch of math-

ematics that underlies digital communication and internet security. As such it supports

the UK to keep its privileged status in fundamental research in number theory. This thesis

aligns with the EPSRC’s strategic focus for Number Theory in its Mathematical Sciences

theme. This research makes connections to neighbouring fields such as the Mathematical

Analysis, via spectral theory, and Mathematical Physics.

The immediate beneficiaries of this research are other researchers in number theory,

automorphic forms, dynamical systems, and mathematical physics. It is expected that

the results will have high long term impact on several disciplines. The publication of the

results will ensure that the impact propagates into different research communities.
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Chapter 1

Introduction

There are five elementary arithmetical

operations: addition, subtraction,

multiplication, division, and. . .

modular forms.

Martin Eichler

A mathematician, like a painter or

poet, is a maker of patterns. If his

patterns are more permanent than

theirs, it is because they are made

with ideas.

G.H. Hardy

A central theme in number theory is the study of statistical and distributional prop-

erties of arithmetic objects, such as primes, automorphic forms or special values of L-

functions. In this thesis we prove results on the distribution of periods and masses of

automorphic forms. The techniques employed are diverse and include the spectral theory

of automorphic forms, exponential sums, probabilistic number theory, subconvexity and

perturbation theory.

1.1 Distribution results in number theory

One of the most fundamental results in Analytic Number Theory is the Prime Number

Theorem, which gives an asymptotic for the number of primes up to any point, hence it

is a key result in the distribution of primes. Let π(x) denote the number of primes less or
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equal to x. The Prime Number Theorem states that

π(x) ∼ Li(x) as x→∞, (1.1)

where Li(x) is the logarithmic integral

Li(x) :=

∫ x

2

dt

log t
. (1.2)

Now let q be a positive integer. We are interested how the primes distribute modulo

q. We observe that if p is a prime larger than q and p ≡ a mod q, then (a, q) = 1, then the

Prime Number Theorem in Arithmetic Progressions (see [24, Chapter 1] or [48, Chapter

17]) states that each residue class a (mod q) with (a, q) = 1 contains roughly the same

amount of primes. There are φ(q) such residue classes, where φ is the Euler totient

function. More precisely, if we define

π(x; q, a) := #{p prime : p ≤ x, p ≡ a( mod q)},

then

π(x; q, a) ∼ Li(x)

φ(q)
. (1.3)

We say that the primes equidistribute in the φ(q) residue classes.

As observed by Riemann in his seminal memoir of 1859, the distribution of the primes

is strongly linked to the analytic properties of the Riemann zeta function. For Re(s) > 1,

we define

ζ(s) =

∞∑
n=1

1

ns
.

Then ζ(s) admits meromorphic continuation to s ∈ C. It follows that the Prime Number

Theorem is equivalent to the non-vanishing of ζ(s) on the line Re(s) = 1, see [48, Chapter

2]. The famous Riemann Hypothesis states that all zeros of ζ(s) in the critical strip

0 < Re(s) < 1 belong on the critical line Re(s) = 1/2. This would imply the error term

|π(x)− Li(x)| � x1/2 log x,
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while the best unconditional bound for the error term is of the form

|π(x)− Li(x)| � x exp
(
−c(log x)3/5(log log x)−1/5

)
,

for some explicit constant c > 0, see [34].

For the study of primes in residue classes modulo q, it is useful to define the Dirichlet

L-functions. Let χ a character modulo q and for Re(s) > 1, we define

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

These L-functions admit meromorphic continuation and functional equation, we refer to

Section 2.3 for details. The Prime Number Theorem in Arithmetic Progressions is equiva-

lent to the non-vanishing of L(1, χ), for all characters χ mod q different from the principal

character. If we assume the Grand Riemann Hypothesis for L(s, χ), then

∣∣∣∣π(x; q, a)− x

φ(q)

∣∣∣∣� x1/2(log x).

The estimate above is non-trivial only if q � x1/2(log x)−1. Unconditionally, a bound is

given by the Siegel–Walfisz Theorem, see [24, p. 133]. If q ≤ (log x)A, for some A ≥ 0,

then ∣∣∣∣π(x; q, a)− x

φ(q)

∣∣∣∣�A
x

(log x)A
.

The examples highlighted above showcase how the distribution of the zeroes of ζ(s)

and L(s, χ) have important implications in the distributions of primes. The L-functions

ζ(s) and L(s, χ) are examples of GL1 L-functions. In this thesis, we will mainly work with

L-functions coming from GL2 representations over Q. We will use their analytic properties

to obtain distribution results for automorphic forms.

1.1.1 Normal distribution in number theory

The normal distribution is one of the most fundamental concepts in mathematics, with

many applications to all branches of science. Its importance is highlighted by the Central

Limit Theorem, which roughly states that the average of a large number of independent

variables converges to the Gaussian distribution, see [3, p. 232]. The probability density

function for the standard normal distribution, i.e. with mean 0 and norm 1, is given by
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1√
2π
e−x

2/2, and its distribution function is

Φ(z) :=
1√
2π

∫ z

−∞
e−x

2/2dx.

It is a common theme in number theory to study objects which intrinsically are not

‘random’ or ‘independent’, such as the primes or the values of the Riemann zeta function,

and to show that they satisfy random-like properties, such as obeying an asymptotic

normal distribution.

A cornerstone in this direction is the Erdős–Kac theorem, see [105, p. 348], [29, p. 18].

It states that, with appropriate normalisations, the distribution of the number of prime

divisors approaches the Gaussian distribution. We define the prime counting function

ω(n) :=
∑
p|n

1. As N →∞, we have

1

N
#

{
n ≤ N :

ω(n)− log logN√
log logN

≤ y
}
→ Φ(y).

This means that the values ω(n) with n ≤ N behave like a Gaussian distribution with

mean log logN and standard deviation
√

log logN .

Another important example is the Selberg Central Limit Theorem for the values of

the Riemann zeta function on the critical line, see [84] or [107]. As T →∞, we have

1

T
meas

({
T ≤ t ≤ 2T : log |ζ(1/2 + it)| ≤ y

√
1

2
log log T

})
→ Φ(y),

where we use the standard Lebesque measure on the reals. In other words, on the dyadic

interval T ≤ t ≤ 2T , we observe that log |ζ(1/2 + it)| behaves like Gaussian with mean

value 0 and standard deviation
√

1
2 log log T .

One of the most powerful methods in probability to obtain convergence to the normal

distribution is the method of moments, see [29, p. 59]. If we can show that the truncated k-

th moments of a sequence f(n) converge to the k-th moment of the Gaussian distribution,

then we can deduce that the sequence converges to the normal distribution. We denote

by

mk :=
1√
2π

∫ ∞
−∞

xke−x
2/2dx
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the k-th moment of the standard normal distribution. Then mk = 0 for odd k and

mk =
k!

2k/2(k/2)!
, for even k.

We define the truncated k-th moment as

EkNf :=
1

N

∑
n≤N

f(n)k.

This means that if |EkNf −mk| → 0 for all k as N → ∞, then we obtain convergence in

distribution.

An alternate way to proceed is by using the Berry–Esseen inequality, see [105, p. 349].

We define the characteristic function

FN (t) :=
1

N

∑
n≤N

eitf(n),

which is a function on the real parameter t. We observe that the derivatives F
(k)
N (0)

produce the k-th moments defined above, hence we can view FN (t) as a moment generating

function. Then we have for all T > 0,

sup
y∈R

∣∣∣∣#{n : f(n) ≤ y}
N

− Φ(y)

∣∣∣∣� 1

T
+

∫ T

−T

∣∣∣e−t2/2 − FN (t)
∣∣∣ dt|t| .

The advantage of using the Berry-Esseen inequality over the method of moments is that

we can obtain explicit rates of convergence. However, it is often the case that the moments

are easy to compute and the characteristic function or the integral above are difficult to

work with.

In Chapter 3 of this thesis, we develop a new method to show that modular symbols

obey asymptotically a normal distribution using the Berry–Esseen inequality. In Chapter

4, we show that modular symbols are equidistributed modulo primes. For both cases, we

provide rates of convergence, which are presumably optimal.

1.2 Statement of the main results

In this section we give a brief description of the main results of this thesis. For the sake

of brevity, we do not provide full definitions and hence some statements may be weaker

or less complete than in the subsequent chapters. However, we pinpoint to the location
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where things are developed properly.

1.2.1 Normal distribution of modular symbols

Modular symbols are fundamental tools in number theory. They can be used to compute

modular forms, study elliptic curves, special values of L-functions and homology and

cohomology of arithmetic groups.

Let f be a holomorphic cusp form of weight 2 and level N . Then for r ∈ Q, we define

the raw modular symbol 〈r〉 ∈ C and the plus/minus version 〈r〉± ∈ R

〈r〉 :=

∫ r

∞
f(z)dz, 〈r〉+ =

〈r〉+ 〈−r〉
2

, 〈r〉− =
〈r〉+ 〈−r〉

2i
. (1.4)

The path of integration can be taken as the vertical line connecting r ∈ Q to the

cusp at ∞, and hence modular symbols can be viewed as periods of the cusp form f .

The plus/minus modular symbols correspond to integrating the real part/imaginary part

Re(f(z)dz)/Im(f(z)dz) of the 1-form f(z)dz. We refer to Section 2.4.1 for a detailed

exposition of the construction and properties of modular symbols.

Mazur and Rubin [66] initiated the study of the arithmetic distribution of modular

symbols for congruence subgroups in order to study the excess rank of elliptic curves over

cyclotomic fields. They put forward a number of conjectures that have received a lot

of attention in recent years. We refer to Section 2.4.2 for an overview of the arithmetic

statistics of modular symbols, where we describe these conjectures and the subsequent

work they inspired, which includes parts of this thesis.

Some of these conjectures are concerned with the value distribution of the modular

symbols coming from rationals with fixed denominator c. They suggest that, as c → ∞,

the values {
〈a/c〉+ : a ∈ (Z/cZ)∗

}
obey asymptotically a normal distribution. Additionally, they propose a law for the second

moment.

Petridis and Risager [79] obtained an average version of these conjectures with an

extra average over the denominators. In Chapter 3, we introduce a new technique to

study the distribution of modular symbols. Our new insight is to use the Berry–Esseen

inequality, an important tool in probabilistic number theory, and the perturbation theory

of the smallest eigenvalue of the Laplacian. Our approach gives convergence rates for the
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distribution, and can be naturally extended to more general settings. We now state the

result of Petridis and Risager, which can also be proved using our method. We define the

sample space

Rd(X) =
{a
c
| 0 < a < c ≤ X, (a, c) = 1, (c, q) = d

}
. (1.5)

Theorem 1.2.1. [79] Let f be a holomorphic cusp form of weight 2 and square-free level

q.

(i) There exists a constant Cf such that, for each fixed d|q, the values

{
〈r〉+

(Cf logX)1/2
: r ∈ Rd(X)

}

have asymptotically a standard normal distribution as X →∞.

(ii) For each divisor d of q, there exists a constant Df,d such that, as X →∞,

1

#Rd(X)

∑
r∈Rd(X)

(〈r〉+)2 = Cf logX +Df,d + o(1).

Our method can be extended to the upper half-space H3. We obtain the following

result for Bianchi modular forms and congruence subgroups of Bianchi groups.

Theorem 1.2.2. Let K be an imaginary quadratic number field of class number one. Let

n C OK be a square-free ideal and F be a Bianchi modular form of weight 2 and level n.

For r ∈ K, let 〈r〉 denote the modular symbol corresponding to F . For d|n, set

Qd(X) = {a/c ∈ K | a ∈ (OK/(c))× , (c) + n = d , 0 < |c| < X}.

(i) There exists a constant CF such that the data

Qd(X)→ R,
a

c
7→ 〈a/c〉√

CF logX
,

has asymptotically a standard normal distribution.

(ii) There exists a constant DF,d such that

1

|Qd(X)|
∑

a/c∈Qd(X)

〈a
c

〉2
= CF logX +DF,d + o(1) .
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We refer to Theorem 3.1.2 for a more general version of this theorem. We prove a

version that holds for all cofinite Kleinian groups Γ < SL2(C) with further restrictions on

the location of the cusps.

1.2.2 Equidistribution mod p

We note that if f is a newform of weight 2 and level N , as we vary along r ∈ Q, the

image of r 7→ 〈r〉± is a lattice in R. Let Ω+ and Ω− be the real and imaginary periods of

f , which are normalising factors that dilate these lattices to Z. Consider the normalised

modular symbol

[r]± :=
〈r〉±

Ω±
∈ Z.

Mazur and Rubin [65] also conjectured that the normalised modular symbols [r]+ equidis-

tribute modulo p as we vary along fractions with fixed denominator. Lee and Sun [57]

proved an average version of the conjecture using dynamical methods. In joint work with

Nordentoft, we show that modular symbols coming from a basis of newforms obey a joint

equidistribution when we also average over denominators. We view [r]+ and [r]− as ran-

dom variables on the space Rd(X) defined in (1.5) and we also allow restriction on the

location of r ∈ R/Z. We denote by [r]±f the normalised modular symbol coming from the

cusp form f .

Theorem 1.2.3. Let f1, . . . , fd a basis of newforms for S2(Γ0(q))new. The random vari-

ables [r]±fi defined on the sample spaces Rd(X) converge in distribution to the uniform

distribution on (Z/pZ)2d as X →∞. More precisely, for any fixed a ∈ (Z/pZ)2d and any

interval I ⊂ R/Z, we have

#
{
a/c ∈ Rd(X) ∩ I | ([a/c]+f1

, . . . , [a/c]−fd) ≡ a mod p
}

#Rd(X)
=
|I|
p2d

+ o(1)

as X →∞.

In addition, we obtain the rate of convergence to the uniform distribution by evalu-

ating a mean-square type sum.

Theorem 1.2.4. Fix f ∈ S2(Γ0(N))new . For large enough p, there exist constants cp, δp >



1.2. Statement of the main results 16

0 such that, as X →∞,

1

p

∑
l∈Z/pZ

(
#{a/c ∈ Rd(X) | [a/c]±f ≡ l mod p}

#Rd(X)
− 1

p

)2

∼ cpX−δp .

Furthermore, we have for X large enough (depending on p),

|{a/c ∈ Rd(X) | [a/c]±f ≡ l mod p}| ≤ |{a/c ∈ Rd(X) | [a/c]±f ≡ 0 mod p}|

with equality if and only if l ≡ 0 mod p.

Remark 1.2.1. We can compute the constants cp and δp explicitly, see Section 4.5.3 for more

details. The second part of the theorem shows that modular symbols obey an interesting

phenomenon, which we can compare to the Chebyshev biases for primes. The residue class

0 (mod p) will always contain more elements than any other residue class.

We also prove a special case of the conjecture when we consider modular symbols of

fixed denominator, see Section 4.3 for more details.

Theorem 1.2.5. Let (N, p) a pair of ‘admissible primes’with p | N −1. Then there exists

f ∈ S2(Γ0(N)) such that the values {[a/c]± | a ∈ (Z/cZ)∗} equidistribute exactly modulo p,

for all c ≡ 0 mod N . This means that for all l ∈ (Z/pZ), the equation [a/c]± ≡ l(mod p)

has exactly φ(c)/p solutions for a ∈ (Z/cZ)∗.

We refer to (4.9) for the definition of an admissible pair. Note that all pairs of

primes (N, p) with N < 250 such that p ≥ 5 and p|N − 1 are admissible unless N =

31, 103, 127, 131, 181, 199, 211.

1.2.3 Higher dimensional hyperbolic spaces

We can also extend the distribution results for modular symbols to the n-dimensional hy-

perbolic space Hn. As we see in Section 2.4.1, there is a correspondence between modular

symbols and elements of cuspidal cohomology H1
cusp(Γ0(N),R) (we assume Γ0(N) acts

trivially on R in these cohomology groups). We use this point of view to obtain general-

isation for Hn. We let Γ < SO(n, 1) a cofinite discrete group acting on Hn. We refer to

Section 2.7 for an introduction to the geometry of the quotient space Γ\Hn.

Theorem 1.2.6. (i) Let ω ∈ H1
cusp(Γ,R). Then the values of the map Γ∞\Γ/Γ∞ → R

given by γ 7→ ω(γ) are asymptotically normally distributed with respect to a ‘natural
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arithmetic ordering’of Γ∞\Γ/Γ∞.

(ii) Let ω1, . . . , ωd ∈ H1
cusp(Γ,Z/pZ) be ‘linearly independent’. Then the random vari-

ables γ 7→ (ω1(γ), . . . , ωd(γ)) are asymptotically uniformly distributed on (Z/pZ)d

with respect to the same arithmetic ordering of Γ∞\Γ/Γ∞.

We refer Sections 2.7 and 4.1 for rigorous statements and definitions.

1.2.4 Quantum Unique Ergodicity

Mass equidistribution of eigenfunctions is a central topic in quantum chaos and number

theory. Let X = SL2(Z)\H. In [87], Rudnick and Sarnak conjectured that normalised

Maaß cusp forms φ of eigenvalue λ obey Quantum Unique Ergodicity (QUE) as λ →

∞. This means that, as λ → ∞, the measures µφ := |φ(z)|2 dxdy
y2 approach the uniform

distribution measure 3
π
dxdy
y2 . Lindenstrauss [59] showed that for Hecke–Maaß forms, the

only possible limiting measures are of the form 3
π c

dxdy
y2 , with 0 < c ≤ 1, and Soundararajan

[101] completed the proof of QUE for Hecke–Maaß forms, showing that c = 1. In [44],

Holowinsky and Soundararajan prove QUE for holomorphic Hecke eigencusp forms, which

we state below.

Theorem 1.2.7. [44] Let f be a normalised Hecke eigencusp form of weight k. For any

φ smooth and bounded on X,

〈
φyk/2f, yk/2f

〉
=

1

vol(X)
〈φ, 1〉+ o(1), as k →∞.

In Chapter 5 we generalise these results to off-diagonal terms, where we consider

two different eigencusp forms f and g of weights k1 and k2 respectively. We show that

correlations of masses dissipate as k1k2 → ∞. Denote by Fk1(z) := yk1/2f(z) and

Gk2(z) := yk2/2g(z), which are eigenfunctions of the Laplacians of weight k1 and k2 respec-

tively. Since f and g may have different weights, we need to employ raising and lowering

operators. We let Rk2
k1

be an isometry from the space of automorphic forms of weight k1

to forms of weight k2 given by successive applications of raising/lowering operators, see

(5.22) for a precise definition. We prove the following theorem.

Theorem 1.2.8. Let f and g be L2-normalised holomorphic Hecke cusp forms of weights



1.2. Statement of the main results 18

k1 and k2 respectively with k1 ≤ k2. Let

δf=g =


1. if f = g;

0, otherwise.

(i) Fix any φ ∈ Cb(Γ\H). Along any sequences of such f and g, we have

〈
φ
(
Rk2
k1
Fk1

)
, Gk2

〉
→ δf=g

1

vol(X)
〈φ, 1〉 as k2 →∞.

(ii) Fix l a nonnegative integer and let φ a square-integrable automorphic form of weight

l. Then

〈φFk, Gk+l〉 → δf=g
1

vol(X)
〈φ, 1〉 as k →∞.

Remark 1.2.2. Theorem 1.2.8(i) corresponds to a generalisation of Quantum Unique Er-

godicity by classifying the possible quantum limits of Hecke cusp forms when we project

back to the modular surface. That is, along any sequence of holomorphic Hecke eigenforms

of increasing weight, we show there are two possible limit points. Part (ii) corresponds to

going along a sequence where the difference in weight is fixed. We can moreover let the

difference l grow with k, see Remark 5.1.2 for details.



Chapter 2

Background material

In this chapter we present the background material upon which we develop the later

chapters. We give a brief introduction to the properties of Fuchsian groups and quotient

surfaces, automorphic forms, L-functions and modular symbols. We introduce key ingre-

dients in our toolset, such as Eisenstein series, Kloosterman sums or the spectral theory

of automorphic functions. Lastly, we discuss brief generalisations to higher dimensional

hyperbolic spaces.

2.1 Geometry of the upper half-plane H

We refer to [47], [53], [98] for comprehensive accounts on the properties of the hyperbolic

upper half-space and Fuchsian groups. We consider the upper half of the complex plane

H := {z = x+ iy : x ∈ R, y > 0}.

The hyperbolic plane H becomes a Riemannian manifold when equipped with the hyper-

bolic metric

ds2 =
dx2 + dy2

y2
.

The correponding volume element is given by

dµ :=
dxdy

y2
.

The Laplace–Beltrami operator ∆ acting on H is given by

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.
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The group SL2(R) acts on H by linear fractional transformations. If γ =

a b

c d

 ∈
SL2(R) and z ∈ H, we have

γ(z) =
az + b

cz + d
∈ H.

We extend H by adding the real line and the point at infinity {∞}, to obtain H∗ :=

H ∪ R ∪ {∞}. The action of SL2(R) can be extended naturally from H to its boundary

R∪{∞}. Since γ and −γ describe the same motion, the group PSL2(R) := SL2(R)/{±I}

describes the orientation-preserving isometries of H∗. The Laplacian commutes with all

isometries, i.e. for all γ ∈ SL2(R) and z ∈ H, we have ∆(f(γz)) = (∆f)(γz).

The non-identity linear fractional transformations are classified into three categories.

Let γ ∈ SL2(R) \ {±I}.

• γ is parabolic if Tr(γ) = ±2. Then γ is conjugate to a matrix of the form

1 λ

0 1

,

which corresponds to the translation motion z 7→ z+λ. Parabolic motions have one

fixed point on R ∪ {∞}.

• γ is elliptic if |Tr(γ)| < 2. Then γ is conjugate to a matrix of the form cos θ sin θ

− sin θ cos θ

, for some 0 ≤ θ < π, which corresponds to rotation of angle

2θ around i. Elliptic motions have one fixed point on H.

• γ is hyperbolic if |Tr(γ)| > 2. Then γ is conjugate to a matrix of the form

λ 0

0 λ−1

,

which corresponds to the dilation motion z 7→ λ2z. Hyperbolic motions have two

fixed points on R ∪ {∞}.

Now consider Γ a Fuchsian subgroup of SL2(R), that is a group Γ that acts disconti-

nously on H, in the sense that the orbit of any point in H has no limit points in H. We

assume that the group Γ is Fuchsian of the first kind, meaning that every point on the

boundary R ∪ {∞} is a limit point of an orbit Γz, for some z ∈ H.

A set F ⊂ H is a fundamental domain for Γ if

(i) distinct points in F ◦ (the interior of F ) are not Γ-equivalent, i.e. if z, w ∈ F ◦ and

γ ∈ Γ such that z = γw, then z = w and γ = ±I;
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(ii) any orbit of Γ contains a point in F (the closure of F ), i.e. for any z ∈ H, there

exists γ ∈ Γ and w ∈ F such that w = γz.

The fundamental domain is not unique, however all fundamental domains have the

same volume

vol(Γ) := |F | =
∫
F
dµ.

The volume of a Fuchsian group of the first kind is always finite, we call such a group

cofinite. A fundamental domain of Γ can be chosen as a hyperbolic polygon with vertices

in H∗ such that edges are identified in pairs by elements of Γ. The group Γ is called

co-compact if the fundamental polygon is compact. A cofinite group Γ is co-compact if

and only if it has no parabolic elements, see [47, p. 42].

Assume that Γ is not co-compact. A point a ∈ R ∪ {∞} is called a cusp of Γ if there

exists a parabolic element γ ∈ Γ such that γa = a. The stability group of a cusp a is the

infinite cyclic group of parabolic motions

Γa := {γ ∈ Γ : γa = a}.

There exists a scaling matrix σa ∈ SL2(R) such that σa∞ = a. For Y > 0, we denote by

Fa(Y ) the cuspidal sector

Fa(Y ) := σa{z = x+ iy ∈ H : 0 ≤ x ≤ 1, y ≥ Y }.

Let a1, . . . ak be representatives for the equivalence classes of cusps of Γ. For Y large

enough, we have a fundamental domain F of the form

F = F (Y ) ∪
k⋃
j=1

Faj (Y ),

where F (Y ) is a compact set.

Let Γ a be cofinite group. Then the quotient space Γ\H can be given a complex

structure and identified as a Riemann surface.
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2.1.1 Double coset decomposition and Kloosterman sums

Let Γ be a cofinite group with cusps. Let a, b be two cusps (not necessarily) distinct with

corresponding scaling matrices σa and σb. We have that

σ−1
a Γaσa = σ−1

b Γbσb = Γ∞ =


1 b

0 1

 : b ∈ Z

 .

We are interested in partitioning the set σ−1
a Γσb into double cosets with respect to Γ∞.

We first look at the subset with fixed point at ∞, that is

Ω∞ =


∗ ∗

0 ∗

 ∈ σ−1
a Γσb

 .

Now, for c > 0, fix some ωa/c =

a b

c d

 ∈ σ−1
a Γσb. Then if

α β

γ δ

 is in the double

coset Γ∞ωa/cΓ∞, then γ = c and α and δ are determined uniquely modulo c. We have

the following decomposition into a disjoint union

σ−1
a Γσb = δabΩ∞ ∪

⋃
c>0

⋃
a mod c

Γ∞ωa/cΓ∞, (2.1)

where a and c run over numbers such that

a ∗

c ∗

 ∈ σ−1
a Γσb and

δab =


1, if a and b equivalent;

0, otherwise.

We denote by Tab a system of representatives of the double cosets in Γ∞\σ−1
a Γσb/Γ∞ with

positive lower-left entry. Also, we define

Rab :=

ac mod 1 :

a b

c d

 ∈ Tab
 .
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Then the map

Tab → Rab, γ 7→ γ∞ mod 1,

is well-defined and bijective. Hence we can write the decomposition (2.1) as

σ−1
a Γσb = δabΩ∞ ∪

⋃
r∈Rab

Γ∞ωrΓ∞.

It is useful to define

Cab =

c > 0 :

∗ ∗
c ∗

 ∈ Tab
 . (2.2)

Let m,n ∈ Z. The Kloosterman sum is defined as

Sab(m,n; c) :=
∑(

a ∗
c d

)
∈Tab

e

(
ma+ nd

c

)
. (2.3)

Kloosterman sums are central objects in analytic number theory, for example they are used

to understand the Fourier coefficients of cusp forms, as we will se later. If Γ = SL2(Z),

there is only one cusp and we have the classical Kloosterman sum

S(m,n; c) =
∑

ad≡1 mod c

e

(
ma+ nd

c

)
.

We mention the far-reaching Weil bound

|S(m,n; c)| ≤ (m,n, c)1/2τ(c)c1/2, (2.4)

where τ(c) is the divisor function. This bound gives us square-root cancellation for Kloost-

erman sums and it follows from the Riemann hypothesis for curves over finite fields.

It is useful to define the Dirichlet L-series

Lab(s,m, n) =
∑(

a ∗
c d

)
∈Tab

e

(
ma+ nd

c

)
c−2s =

∑
c∈Cab

S(m,n; c)

c2s
. (2.5)

The analytic properties of Lab(s,m, n) appear in the Fourier coefficients of Eisenstein series

and their analytic properties play an important role in Chapters 3 and 4.
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2.1.2 Congruence groups

The most important examples of cofinite Fuchisan groups and most interesting from an

arithmetic point of view are the congruence groups. The first example is the modular

group SL2(Z) with its fundamental domain

{z = x+ iy : |x| ≤ 1/2, |z| ≥ 1}.

The quotient surface SL2(Z)\H is called the modular curve and has one cusp at ∞. We

have that vol(SL2(Z)) = 3/π.

Let N be a positive integer. The principal congruence group of level N is the subgroup

Γ(N) :=

γ ∈ SL2(Z) : γ ≡

1 0

0 1

 mod N

 .

A subgroup Γ such Γ(N) ⊂ Γ ⊂ SL2(Z) is called a congruence group of level N , where N

is the smallest integer with this property. The most important example for us is Γ0(N),

the Hecke congruence group of level N

Γ0(N) :=


a b

c d

 ∈ SL2(Z) : c ≡ 0 mod N

 .

One can see that

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− p−2

)
and [SL2(Z) : Γ0(N)] = N

∏
p|N

(
1 + p−1

)
,

see [98, p. 25] ot [47, p. 48] for details and for description of the cusps of such groups. An

important particular case for us is presented by square-free integers N , when a complete

set of inequivalent cusps of Γ0(N) is given by 1/d with d|N . The cusp 1/N is equivalent

to the cusp at infinity. In this case, we have that

R∞ 1
d

=
{a
c
∈ Q/Z : (a, c) = 1, (c, q) = d

}
.

Therefore we have a nice arithmetic description of double coset representatives, see the

parallels with the set (1.5) defined in the introduction upon which we obtain distribution

results for modular symbols.
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2.2 Automorphic forms

2.2.1 Holomorphic modular forms

Let k be an integer. We definte the weight k right action of GL2(R) on functions f : H→ C

by

(f |kγ)(z) := (cz + d)−kf(γz)(ad− bc)k/2, where γ =

a b

c d

 ∈ GL2(R).

This is a well-defined action, in the sense that f |k(γ1γ2) = (f |kγ1)|kγ2, for all γ1, γ2 ∈

GL2(R).

Fix Γ < SL2(R) be a cofinite group with cusps.

Definition 2.2.1. A holomorphic modular form of weight k for Γ is a holomorphic func-

tion f : H→ C such that

(i) f |kγ = f , for all γ ∈ Γ;

(ii) f is holomorphic at all cusps of Γ.

The condition (ii) means the following. For a cusp a of Γ, we define fa := f |kσa. Then

fa is invariant under σ−1
a Γσa, which corresponds to translations z → z+ h, where h is the

width of the cusp a. Hence we can write fa(z) = Fa(e
2πiz/h), where F (q) is meromorphic

in the domain 0 < |q| < r, for some r > 0. Condition (ii) means that Fa is holomorphic

at q = 0. Therefore fa has Fourier expansion

fa(z) =
∑
n≥0

f̂a(n)e(nz/h).

If, moreover, f̂a(0) = 0, we say that f vanishes at the cusp a. If f vanishes at all cusps,

we call it a cusp form. We denote the space of holomorphic modular forms of weight k for

Γ by Mk(Γ). In addition, we let Sk(Γ) the subset of Mk(Γ) denote the space of weight k

cusp forms for Γ.

We note that, if f is a modular form of weight 2 for Γ, then f(γz)d(γz) = f(z)dz, for

all γ ∈ Γ. Hence f(z)dz is a Γ-invariant holomorphic one-form. This gives a correspon-

dence between Sk(Γ) and regular differential one-forms on Γ\H, which a key fact in the

construction of modular symbols, see Section 2.4.1.

We can easily check that if f ∈ Sk(Γ), then yk/2|f(z)| is Γ-invariant and bounded

on H (the converse is also true, in the sense that if yk/2|f(z)| bounded on H, then f(z)
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vanishes at all cusps of Γ). More generally, we note that if f, g ∈ Sk(Γ), then the function

ykf(z)g(z) is Γ-invariant. Hence we can define the Petersson inner product on Sk(Γ) given

by

〈f, g〉 :=

∫
Γ\H

ykf(z)g(z)dµ.

We next proceed to construct the fundamental examples of holomorphic modular

forms, which are the Eisenstein and Poincaré series. To keep the notation light, we define

the series associated to the cusp at ∞, but we can do similar constructions for all cusps.

Let k > 2 and define the Eisenstein series

Ek(z) :=
∑(

a b
c d

)
∈Γ∞\Γ

(cz + d)−k.

Then Ek(z) converges absolutely, and hence is holomorphic in H, and is clearly modular

by definition. It follows that Ek ∈Mk(Γ). Now fix an integer m ≥ 0. The m-th Poincaré

series of weight k is given by

Pm(z) :=
∑

γ=
(
a b
c d

)
∈Γ∞\Γ

(cz + d)−ke(mγz).

For m = 0, we have that Pm(z) = Ek(z) and for m > 0, Pm(z) ∈ Sk(Γ), see [48, p.

358]. Moreover, if f ∈ Sk(Γ) has Fourier expansion f(z) =
∑

n>0 ane(nz), then a simple

application of the unfolding principle, see [48, p. 359], shows that

〈f, Pm〉 =
Γ(k − 1)

(4πm)k−1
an.

As a consequence, we see that the Poincaré series span Sk(Γ). It is interesting to mention

that the Fourier coefficients of Poincaré series are closely related to Kloosterman sums,

see [90, p. 23] for details.

We define the Hecke operators Tn on functions f : H→ C by

Tnf(z) =
∑
ad=n

(a
d

)k ∑
0≤b<d

f

(
az + b

d

)
.

Then the following properties hold, see [46, Chapter 6], [90, p.29]:

(i) Tmn = TmTn if (m,n) = 1;
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(ii) If p prime, then

TpnTp = Tpn+1 + pn−1Tpn−1 ;

(iii) If (m,N) = 1, then Tm acts on S2(Γ0(N)) and it is self-adjoint, i.e

〈Tmf, g〉 = 〈f, Tmg〉 , for all f, g ∈ Sk(Γ0(N));

(iv) If f(z) =
∑

n≥1 a(n)e(nz) is an eigenform of all Hecke operators Tm with eigenvalues

λ(m), then

a(n) = a(1)n
k−1

2 λ(n), for all n.

We note that if f ∈ Sk(Γ0(M)), for some M |N , then the function z 7→ f(dz) belongs

to Sk(Γ0(N)), for any d divisor of N
M . We denote by Sk(Γ0(N))old the space of oldforms,

which is composed of such functions for proper divisors M of N . We denote its orthogonal

complement in Sk(Γ0(N)) by Sk(Γ0(N))new, which is the space of newforms. Then there

exists a basis of Sk(Γ0(N))new consisting of eigenfunctions of Tp, for all p - N , see [11,

Theorem 1.4.5].

Lastly, we mention the Atkin–Lehner involutions. Let e a divisor of N and let We

any integral matrix of the form

 ae b

cN de

 which has determinant e. Then the matrix

We normalises Γ0(N) and we have that W 2
e ∈ eΓ0(N), hence the action of the matrix We

is an involution. Moreover, the action of We on Sk(Γ0(N)) commutes with the action of

all Hecke operators.

2.2.2 Maaß forms

In this subsection we highlight a different kind of automorphic functions that have more

straightforward transformation rules, but are not necessarily holomorphic. Maaß forms are

key ingredients in the hammonic analysis of Γ\H. Our main reference for this subsection

is [47].

Fix Γ a cofinite Fuchsian group. We denote by A(Γ\H) the space of automorphic

forms with respect to Γ, that is functions f : H→ C that satisfy

f(γz) = f(z), for all γ ∈ Γ.

Hence these are functions on the Riemann surface Γ\H. Let L(Γ\H) denote the space of
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automorphic forms that are square-integrable. On L(Γ\H) we define the inner product

〈f, g〉 :=

∫
Γ\H

f(z)g(z)dµ. (2.6)

A function f ∈ A(Γ\H) that is an eigenfunction of the Laplace operator ∆ is called a

Maaß form. Denote by λ(s) := s(1− s). Then we denote by As(Γ\H) the space of Maaß

forms with eigenvalue λ(s), i.e. automorphic forms which satisfy

∆f(z) = λ(s)f(z).

One of the goals of this section is to show the decomposition of L(Γ\H) in terms of

eigenfunctions of ∆. It is useful to define

B(Γ\H) := {f ∈ L(Γ\H) : f and ∆f smooth and bounded}.

Then ∆ acts on B(Γ\H) and B(Γ\H) is dense in L(Γ\H).

2.2.2.1 Eisenstein Series

Our first example of a Maaß form is the (nonholomorphic) Eisenstein series. Fix a a cusp

of Γ. For Re(s) > 1, we define

Ea(z, s) :=
∑

γ∈Γa\Γ

(Imσ−1
a γz)s.

Then Ea(z, s) is an eigenfunction of ∆ with eigenvalue λ(s), but it is not square-integrable.

If a and b are cusps for Γ, we have the Fourier expansion [47, p. 66]

Ea(σbz, s) = δaby
s + φab(s)y

1−s +
∑
n6=0

y1/2φab(n, s)Ks−1/2(2π|n|y)e(nx), (2.7)

where

φab(s) = π1/2 Γ(s− 1/2)

Γ(s)
Lab(s, 0, 0),

φab(n, s) = πsΓ(s)−1|n|s−1/2Lab(s, 0, n),

(2.8)

where the series Lab(s,m, n) is defined in (2.5) and Ks(y) is the K-Bessel function as

defined in [47, Appendix B.4].
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The Eisenstein series Ea(z, s) admits meromorphic continuation to s ∈ C and func-

tional equation, see [47, Chapter 6]. There are finitely many poles in Re(s) ≥ 1/2 and

they are all simple and belong to the real segment (1/2, 1]. If sj is such a pole, we denote

the residue

ua,sj (z) := Ress=sj Ea(z, s).

Then ua,sj (z) is a Maaß form and moreover it is square-integrable. The residue functions

play an important role in the spectral decomposition of L(Γ\H). In Chapter 3, we use the

analytic properties of ua,sj , where we work with an additional continuous family of twists

coming from modular symbols.

The point s = 1 is a simple pole of Ea(z, s) and the residue is the constant function

ua,1(z) =
1

vol(Γ)
, for all cusps a.

The Selberg Eigenvalue Conjecture predicts that for congruence subgroups Γ0(N), the

first non-zero eigenvalue of ∆ acting on L(Γ0(N)\H) is at least 1/4. By the above, this

would imply that s = 1 is the only pole of Ea(z, s) in the region Re(s) ≥ 1/2. However,

there exist non-congruence subgroups Γ such that ∆ has eigenvalues arbitrarily close to

0, see [47, p. 182].

We denote by Rsj (Γ\H) the space spanned by the residues of all Eisenstein series at

s = sj , hence the dimension of Rsj (Γ\H) is at most the number of inequivalent cusps of

Γ. Also, we denote by R(Γ\H) the subspace spanned by all residues sj in the interval

1/2 < sj ≤ 1, which is called the residual spectrum. Therefore we have the orthogonal

decomposition

R(Γ\H) =
⊕

1/2<sj≤1

Rsj (Γ\H).

We now briefly mention the functional equation for the Eisenstein series. Let

a1, . . . , ah be representatives for the inequivalent cusps of Γ. Denote by E(z, s) the column

vector of Eisenstein series Eaj (z, s) and the h×h scattering matrix Φ(s) = (φab(s)), where

φab(s) apper in the 0-Fourier coefficients (2.8). Then we have

E(z, s) = Φ(s)E(z, 1− s). (2.9)
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Moreover, the scattering matrix satisfies

Φ(s)Φ(1− s) = Id.

We now introduce the incomplete Eisenstein series. Let ψ be a smooth function and

compactly supported on R+. We then define

Ea(z|ψ) :=
∑

γ∈Γa\Γ

ψ(Imσ−1
a γz). (2.10)

Then Ea(z|ψ) is a bounded automorphic function, and hence Ea(z|ψ) ∈ L(Γ\H). However,

it is not a Maaß form since it is not an eigenfunction of ∆. We denote by E(Γ\H) the

space of incomplete Eisenstein series.

We can represent Ea(z|ψ) as a contour integral of the standard Eisenstein series. Let

Ψ(s) be the Mellin transform of ψ given by

Ψ(s) =

∫ ∞
0

ψ(y)ys−1dy.

Then, for σ > 1, we have

Ea(z|ψ) =
1

2πi

∫
(σ)
Ea(z, s)Ψ(−s)ds.

We see that the Laplacian ∆ acts on E(Γ\H). We can decompose E(Γ\H) in terms

of residual spectrum R(Γ\H) and the Eisenstein series at Re(s) = 1/2. Let {uj} be an

orthonormal basis for R(Γ\H). We quote [47, Theorem 7.3]. Every f ∈ E(Γ\H) has the

expansion

f(z) =
∑
j

〈f, uj〉uj(z) +
∑
a

1

4π

∫ ∞
−∞
〈f,Ea(·, 1/2 + ir)〉Ea(·, 1/2 + ir)dr. (2.11)

2.2.2.2 Cusp forms

We note that if f ∈ L(Γ\H), for each cusp a, we have a Fourier expansion

f(σaz) = fa(y) +
∑
n 6=0

f̂an(y)e(nx).
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We let C(Γ\H) the subspace of B(Γ\H) of automorphic forms that vanish at all cusps, i.e.

C(Γ\H) = {f ∈ B(Γ\H) : f̂a = 0, for all cusps a}.

Elements of C(Γ\H) are called cusp forms. Then ∆ acts on C(Γ\H) and we have the

orthogonal decomposition

B(Γ\H) = E(Γ\H)
⊕
C(Γ\H). (2.12)

The Laplacian ∆ has pure point spectrum on C(Γ\H), see [47, Chapter 4]. Therefore this

space is spanned by eigenfunctions of ∆, which are called Maaß cusp forms. Hence there

exists an orthonormal basis {uj} of C(Γ\H) composed of Maaß cusp forms such that, for

all f ∈ C(Γ\H), we have

f(z) =
∑
j

〈f, uj〉uj(z).

Using (2.12) and the results from the previous subsection, we obtain the harmonic spectral

decomposition of B(Γ\H).

If ϕ is a Maaß cusp form with eigenvalue 1/4 + r2 = λ(1/2 + ir), then we have the

Fourier expansion of the type

ϕ(z) =
√
y
∑
n6=0

ρ(n)Kir(2π|n|y)e(nx), (2.13)

where ρ(n) are the Fourier coefficients, see [11, p. 106]. The theory of Hecke operators

for Maaß cusp forms is very similar to that of holomorphic forms, see [28, Section 6]. If

ϕ is a Maaß form which is also a Hecke eigenform for all Hecke operators Tn, when we

call ϕ a Hecke–Maaß eigen cusp form. Its Fourier coefficients are given in terms of Hecke

eigenvalues λ(n):

ρ(n) = ρ((−1)sgn(n))λ(|n|)|n|−1/2.

As in the holomorphic case, for congruence groups Γ0(N), there exists an orthonormal

basis of C(Γ0(N)\H) composed of Hecke–Maaß cusp forms.

Remark 2.2.1. In Chapter 5 we work with a slightly more general automorphic forms of
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weight k. These are functions f : H→ C which transform by

f(γz) = jγ(z)kf(z), for all γ ∈ Γ, (2.14)

where jγ(z) =
cz + d

|cz + d|
with γ =

∗ ∗
c d

. We denote by Lk(Γ\H) the space of square-

integrable weight k automorphic forms. In Section 5.2 we explain in detail the spectral

decomposition of Lk(SL2(Z)\H) in terms of Maaß forms of weight k, which are eigenfunc-

tions of the Laplcian of weight k given by

∆k = y2

(
∂2

∂x2
+

∂2

∂y2

)
− ik ∂

∂x
.

2.3 L-functions

2.3.1 Definitions and basic properties

We begin by reviewing some properties of L-functions. Our main references for this section

are [48, Chapter 5], [11, Chapter 1] and [46, Chapter 7].

Definition 2.3.1. A meromorphic function L(s, f) is called an L-function if it satisfies

the following properties.

• L(s, f) admits a Dirichlet series with an Euler product of degree d

L(s, f) =
∑
n≥1

af (n)

ns
=
∏
p

d∏
j=1

(
1− αj(p)

ps

)−1

,

which is absolutely convergent for Re(s) > 1.

• We write

L∞(s, f) = N s/2
m∏
j=1

ΓR(s+ µj),

where ΓR(s) := π−s/2Γ(s/2), N = N(f) ∈ Z+ denotes the conductor and µj ∈ C are

some parameters with Re(µj) > 1. Then the completed L-function

Λ(s, f) := L(s, f)L∞(s, f)

admits analytic continuation to s ∈ C with poles at most at s = 0 and s = 1.
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Moreover, it satisfies the functional equation

Λ(s, f) = κΛ(1− s, f),

where κ = κ(f) is a complex number of absolute value 1 (the root number).

If L(s, f) is a L-function, then we define the analytic conductors C(f) and C(f, s)

C(f) = N

d∏
j=1

(1 + |µj |) and C(s, f) = N

d∏
j=1

(1 + |µj + s|). (2.15)

We say that the L-function L(s, f) satisfy the Ramanujan–Petersson conjecture if |αi(p)| =

1 for p|N and |αi(p)| ≤ 1 otherwise. As we will see later, this assumption has important

consequences. However, the Ramanjuan–Petersson conjecture was only shown to hold for

some particular families of L-functions, even though we expect it to hold for all L-functions

coming from automorphic representations as part of Langlands philosophy.

A central theme in analytic number theory is the study of special values of L-functions

and the analytic properties of L(s, f). The most important conjecture in this direction is

the Grand Riemann Hypothesis (GRH for short), a conjectural statement about the zeros

of L-functions with many important implications [48, Chapter 5.9]. It states that all zeros

of an L-function in the critical strip 0 < Re(s) < 1 are on the critical line Re(s) = 1/2.

We next highlight some examples of L-functions. We begin with the Riemann zeta

function ζ(s) given by

ζ(s) =
∑
n≥1

1

ns
=
∏
p

1

1− p−s
,

for Re(s) > 1. It is closely related to the Riemann xi function

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s),

which is entire for all s ∈ C and has functional equation ξ(s) = ξ(1− s).

Our next examples are the Dirichlet L-functions L(s, χ). Let χ be a primitive char-

acter modulo q and define

L(s, χ) =
∑
n≥1

χ(n)

ns
=
∏
p

1

1− χ(p)p−s
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for Re(s) > 1. Then L(s, χ) is an L-function of degree 1, conductor q and gamma factors

L∞(s, χ) = qs/2ΓR(s+ δ),

where δ = 0 if χ(−1) = 1 and δ = 1 if χ(−1) = −1. Its root number is κ(χ) = τ(χ)/
√
q,

where τ(χ) is Gauss sum associated to the character χ. The L-functions L(s, χ) correpond

to automorphic representations of GL1 over Q.

We next move to L-functions arising from cuspidal representations of GL2 over Q,

which correspond to holomorphic cusp or or Maaß cusp forms. Let f ∈ Sk(Γ0(N)) be

a holomorphic cusp form of weight k and level N . Let f(z) =
∑

n≥1 af (n)e(nz) be the

Fourier expansion at infinity. We normalise by writing

af (n) = af (1)λf (n)n(k−1)/2.

Thus, if f is a Hecke cusp form, then λf (n) are the Hecke eigenvalues. For Re(s) > 1, we

define

L(s, f) =
∑
n≥1

λf (n)

ns
=
∏
p

(
1−

αf (p)

ps

)−1(
1−

βf (p)

ps

)−1

.

Then L(s, f) is an L-function of degree 2 and conductor N . By definition, we have the

factorisation of Hecke polynomials

1− λf (p)p−s + p−2s =
(
1− αf (p)p−s

) (
1− βf (p)p−s

)
.

By work of Deligne [25], we know that |αf (p)| = |βf (p)| = 1, for all primes p not dividing

N , hence L(s, f) satisfies the Ramanujan–Petersson conjecture. The gamma factors of

L(s, f) are given by

L∞(f, s) = N s/2ΓR(s+ (k − 1)/2)ΓR(s+ (k + 1)/2).

This implies that

C(f) = N
k + 1

2

k + 3

2
� Nk2.

Similarly, let ϕ be a Maaß form of level N which is an eigenfunction of the Laplacian

with eigenvalue λ(1/2 + ir) = 1/4 + r2, for some r ∈ R. As in (2.13), we write the Fourier
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expansion at ∞ as

ϕ(z) =
√
y
∑
n6=0

ρ(n)Kir(2π|n|y)e(nx)

and we associate the L-function

L(s, ϕ) :=
∑
n≥1

ρ(n)

ns
=
∏
p

(
1− ρ(p)p−s + p−2s

)
of degree 2 and conductor N . Gamma factors are given by

L∞(s, ϕ) = N s/2ΓR(s+ δ + ir)ΓR(s+ δ − ir),

where δ = 0 if φ even and δ = 1 if φ odd. Therefore the analytic conductor is

C(ϕ) = N(1 + δ + |r|)2 � Nr2.

In contrast to holomorphic cusp forms, it is not known that L(s, ϕ) satisfy the Ramanujan–

Petersson conjecture. The best known bound is due to Kim and Sarnak [55], who prove

|αϕ(p)|, |βϕ(p)| ≤ p7/64.

2.3.2 Rankin–Selberg convolution

For simplicity of exposition, we work with Γ = SL2(Z). The theory can be generalised to

all congruence groups, however extra care needs to be taken for local factors at primes

dividing the level.

Let f and g cusp forms, holomorphic or Maaß. We then have the Rankin–Selberg

convolution L(s, f × g) given by the the following Euler product for Re(s) > 1:

∏
p

(
1−

αf (p)αg(p)

ps

)−1(
1−

αf (p)βg(p)

ps

)−1(
1−

βf (p)αg(p)

ps

)−1(
1−

βf (p)βg(p)

ps

)−1

.

It admits analytic continuation to all s ∈ C and it has a simple pole at s = 1 if and only

if f = g. We can check that, for Re(s) > 1, we have

L(s, f × g) = ζ(2s)
∑
n≥1

λf (n)λg(n)

ns
.
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Now assume f and g are holomorphic cups forms of weights k1 and k2 respectively, with

k1 ≤ k2. Then L∞(s, f × g) is given by

ΓR

(
s+

k1 + k2

2

)
ΓR

(
s+

k1 + k2

2
− 1

)
ΓR

(
s+

k2 − k1

2

)
ΓR

(
s+

k2 − k1

2
+ 1

)
.

(2.16)

This implies that

C(f × g) � (k1 + k2)2(1 + k2 − k1)2. (2.17)

We refer to [48, p. 133] for expressions of L∞(s, f × g) in the case that f and g are both

Maaß forms or they are mixed holomorphic and Maaß.

If f, g are holomorphic cusp forms of weight k, we have the very useful integral

representation

(4π)1−s−kΓ(s+ k − 1)af (1)ag(1)
L(s, f × g, s)

ζ(2s)
=

∫
Γ\H

ykf(z)g(z)E(z, s)dµ, (2.18)

which follows from the now classical Rankin–Selberg unfolding method. We can obtain a

similar statement for Maaß forms, also see Proposition 5.3.1 for a statement about mixed

weights.

When f = g, we define the symmetric square L-function

L(s, sym2f) :=
∏
p

(
1−

αf (p)2

ps

)−1(
1−

βf (p)2

ps

)−1(
1− 1

ps

)−1

=
1

ζ(s)
L(f × f, s) .

The Gamma factors are

L∞(s, sym2f) = ΓR(s+ 1)ΓR(s+ k − 1)ΓR(s+ k),

if f is holomorphic of weight k and

L∞(s, sym2f) = ΓR(s+ 1)Γ(s+ 2ir)Γ(s+ 2ir),

if f is Maaß form with eigenvalue 1/4 + r2. As a consequence of (2.18), we see that for

f ∈ Sk(Γ), we have [48, (5.101)]

|af (1)|2 =
ζ(2)(4π)k 〈f, f〉

Γ(k)L(1, sym2f)vol(Γ)
. (2.19)
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In particular, this implies that L(1, sym2f) > 0. The size of L(1, sym2f) plays an impor-

tant role in Chapter 5 in relation to the QUE for holomorphic cusp forms.

Similar to the definition of L(s, f×g), we can define the triple convolution L-function

L(s, φ1 × φ2 × φ3), where φi are holomorphic/Maaß cusp forms. This will be a degree 8

L-function. If φi ∈ Ski(Γ) are L2-normalised Hecke cusp forms such that k1 + k2 = k3,

then Watson [110] obtains the beautiful integral representation formula

∫
Γ\H

yk3φ1(z)φ2(z)φ3(z)dµ =
1

8

Λ(1/2, φ1 × φ2 × φ3)

Λ(1, sym2φ1)Λ(1, sym2φ2)Λ(1, sym2φ3)
. (2.20)

Ichino [45] has generalised this to general automorphic representation of GL2 over number

fields. In Section 5.3 we will use an equivalent form of (2.20) for mixed Maaß forms and

holomorphic cusp forms of different weights.

2.3.3 Subconvexity results

It is of great interest to obtains bounds for the growth of L-functions L(s, f) on the critical

line Re(s) = 1/2. We begin by mentioning the convexity bound [48, (5.21)]

L

(
1

2
+ it, f

)
�ε C(1/2 + it, f)

1
4

+ε,

which follows from the Phragmén–Lindelöf convexity principle. Any result of the form

L

(
1

2
+ it, f

)
� C(1/2 + it, f)

1
4
−δ,

for some δ > 0, is called a subconvexity result. Subconvexity of L-functions has many

implications for equidistribution and QUE type problems, see for example [27]. We note

that, assuming that the Riemann hypothesis holds for L(s, f), we have

L

(
1

2
+ it, f

)
�ε C(1/2 + it, f)ε. (2.21)

The conjecture (2.21) about L(s, f) is called the Lindelöf hypothesis.

The first subconvexity result is by Hardy–Littlewood–Weyl for the Riemann zeta

function, see [48, p. 204]. They show that

ζ

(
1

2
+ it

)
�ε (1 + |t|)

1
6

+ε .
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The current best result is by Bourgain [7], who improved the exponent to 53/342. The

literature on subconvexity results is vast and fast expanding, see for example [28], [69], [81]

for GL1 and GL2 results and [58], [71] for results in more general settings.

In particular, we mention the following result of Soundararajan [102]. If we assume

that the Ramanujan–Petersson conjecture holds for L(s, f), then

L

(
1

2
, f

)
�ε

C(f)1/4

(log(C(f))1−ε .

This is called a weak subconvexity result, since there is no power saving in the exponent,

only a logarithmic saving. However, this is enough to apply it towards QUE for holomor-

phic cusp forms, as seen in [44]. In Chapter 5, this weak subconvexity result plays an

important role in our work for dissipation of masses of holomorphic cusp forms.

2.4 Modular symbols

Modular symbols are certain periods of weight 2 cusp forms introduced by Birch and Manin

and they are an indispensable tool for studying (twisted) L-functions of holomorphic cusp

forms [62], [64] and for computing modular forms [20], study elliptic curves and homology

and cohomology of arithmetic groups. For instance, see [103] for explicit computations of

the space Sk(Γ0(N)) using modular symbols.

2.4.1 Construction of modular symbols

We refer to [103], [20, Chapter 2], [22] for detailed descriptions on the constructions and

properties of modular symbols. We first observe that if z, w ∈ H are Γ-equivalent, then

the family of smooth paths from z to w in H determines a unique homology class in

H1(Γ\H,Z). In fact, the class depends only on γ and we have the surjective map

Φ : Γ→ H1(Γ\H,Z), γ 7→ {∞, γ∞},

which induces the canonical isomorphism

H1(Γ\H,Z) ∼= Γ/[Γ,Γ] .
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As in [89], we denote by H1
cusp(Γ\H,C) the space of cuspidal 1-forms, that is differerentials

on Γ\H that vanish on cusps. We have the Eichler–Shimura isomorphism

S2(Γ)⊗ S2(Γ)→ H1
cusp(Γ\H,C), (f, g) 7→ f(z)dz + g(z)dz.

Hence any 1-form ω = f(z)dz + g(z)dz is composed of the ‘holomorphic’ part f(z)dz and

‘antiholomorphic’ part g(z)dz. However, if we are interested in harmonic differentials, then

we have f(z) = g(z). In view of this relation, not much information is lost by ignoring

the antiholomorphic part and we can use in practice just the holomorphic part f(z)dz.

We note that any cuspidal form is cohomologous to a form of compact support, i.e.

if α is a cusp form, there exists α̃ ∈ H1
c (Γ\H,C) such that

∫
Φ(γ)

α =

∫
Φ(γ)

α̃, for all γ ∈ Γ ,

and we have the isomorphism

H1
cusp(Γ\H,C) ∼= H1

c (Γ\H,C),

we refer to [77, Proposition 2.1] for a detailed construction of this isomorphism. We have

the exact Poincaré pairing between homology and cohomology

H1(Γ\H,C)×H1
c (Γ\H,C)→ C, (C,α) 7→

∫
C
α .

Moreover, every class in H1
c (Γ\H,C) has exactly one harmonic representative, see [89, p.

p. 8]. Therefore, if we denote by HARcusp(Γ\H,C) the space of harmonic cuspidals 1-forms

on Γ\H, we have

H1
cusp(Γ\H,C) ∼= H1

c (Γ\H,C) ∼= HARcusp(Γ\H,C).

With this in mind, for γ ∈ Γ and α ∈ H1
cusp(Γ\H,C), we define the modular symbol

〈γ, α〉 as

〈γ, α〉 :=

∫
Φ(γ)

α =

∫ γz

z
α, (2.22)
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for any z ∈ H∗. From this definition, we can easily see that, for γ1, γ2 ∈ Γ,

〈γ1γ2, α〉 =

∫ γ1γ2z

z
α =

∫ γ2P

P
α+

∫ γ1γ2P

γ2P
α = 〈γ1, α〉+ 〈γ2, α〉 .

We note that if α is a cuspidal form, then for any parabolic γ ∈ Γ,

〈γ, α〉 =

∫ γz

z
α = 0 .

In particular, 〈γ, α〉 = 0, for all γ ∈ Γa, for all cusps a. The additive property of modular

symbols means that we can view modular symbols as elements of H1
cusp(Γ,C).

When α is a real-valued 1-form, for real parameters ε, we can define the family of

unitary characters

χε : Γ→ S1, γ 7→ exp(2πiε 〈γ, α〉).

One of the key ideas in Chapter 3 is to use these characters to twist the Laplacian or the

Eisenstein series, and then use perturbation theory for small ε, in order to deduce results

about the distribution of modular symbols.

As observed in [89], all characters of Γ that vanish on parabolics are of the form

χε. These characters can be viewed as elements of the cohomology group H1
cusp(Γ,R/Z).

This point of view is useful for generalisations to higher dimensional hyperbolic spaces.

In Chapter 4 we will study the distribution of characters in H1
cusp(Γ,R/Z), where Γ is a

cofinite group acting on Hn.

Returning to the 2-dimensional case, for f ∈ S2(Γ), if we take α = f(z)dz, we simply

denote

〈γ, f〉 := 〈γ, α〉 .

We recall the definition (1.4) for modular symbols 〈r〉, where r ∈ Q:

〈r〉 :=

∫ r

∞
f(z)dz,

where the path of integration connects the cusp at ∞ with the cusp r ∈ Q. We remark

that our definitions for modular symbols are closely related. Indeed, there exists a cusp a
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such that r and a are Γ-equivalent, i.e. r = γσa∞, for some γ ∈ Γ. Then

〈r〉 =

∫ γσa∞

∞
f(z)dz =

∫ σa∞

∞
f(z)dz +

∫ γσa∞

σa∞
f(z)dz =

∫ σa∞

∞
f(z)dz + 〈γ, f〉 . (2.23)

Therefore the definitions agree up to a shift given by a period integral depending only on

the cusp a.

We denote the plus/minus modular symbols

〈r〉+ =
〈r〉+ 〈−r〉

2
∈ R, 〈r〉− =

〈r〉+ 〈−r〉
2i

∈ R.

This corresponds to integrating the real/imaginary part of the 1-from f(z)dz, i.e.

〈r〉+ =

∫ r

∞
Re(f(z)dz), 〈r〉− =

∫ r

∞
Im(f(z)dz).

The image of the map

Q→ R, r 7→ 〈r〉±,

is a lattice in R given by Ω±f Z. We say that Ω±f is the real/imaginary period of f . Hence,

for r ∈ Q we can define the normalised modular symbol

[r]± :=
〈r〉±

Ω±f
∈ Z.

In Chapter 4, we study the distribution of [r]± modulo primes. We will use the notation

m±f (r) instead of [r]± for normalised modular symbols.

We mention some basic properties of modular symbols 〈r〉±, see [66, p. 5]:

(i) 〈r + 1〉± = 〈r〉± = ±〈−r〉±;

(ii) For any γ ∈ Γ, 〈r〉± = 〈γr〉± − 〈γ∞〉±;

(iii) Let c and N positive integers, such that, if n = gcd(c,N) and N = ne, then e

and n coprime. Let we the eigenvalue of the Atkin–Lehner involution We acting on

f ∈ S2(Γ0(N)). Then if a, d ∈ Z such that ade ≡ −1 mod c, then

〈a/c〉± = −we〈d/c〉±.
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Now let f ∈ Sk(Γ) be a holomorphic cusp form of weight k with Fourier expansion

f(z) =
∑
n≥1

af (n)n(k−1)/2e2πinz.

For r ∈ R, we define the additive twist by r of the L-function L(s, f) to be

L(s, f, r) :=
∑
n≥1

af (n)e(nr)

ns
, for Re(s) > 1.

Let r = a/c ∈ Q and d ∈ (Z/cZ)× such that ad ≡ 1 mod c. We define the completed

L-function

Λ(s, f, r) =
( c

2π

)s+ k−1
2

Γ

(
s+

k − 1

2

)
L(s, f, r) =

∫ ∞
0

f(a/c+ iy/c)ys+
k−1

2
dy

y
.

It admits meromorphic continuation to s ∈ C and functional equation:

Λ(s, f, a/c) = Λ(1− s, f, d/c).

From the definition of the completed L-function, for f ∈ S2(Γ), we can write

L(1/2, f, r) = 2πi〈r〉. (2.24)

Therefore modular symbols can be understood in terms of central values of additively

twisted L-functions!

2.4.2 Arithmetic statistics of modular symbols

The study of of distribution properties of modular symbols was pioneered by Goldfeld

in the 90’s, inspired by a connection to Szpiro’s conjecture (which relates the conductor

and the discriminant of elliptic curves). In his work [37], [38], he introduced the following

Eisenstein series twisted by modular symbols, known today as the Goldfeld Eisenstein

series. For f, g ∈ S2(Γ) and m,n ∈ Z, they are defined as

Em,na (z, s) :=
∑

γ∈Γa\Γ

〈γ, f〉m 〈γ, g〉n Im(σ−1
a γz)s.

In his thesis, O’Sullivan [75] proved the meromorphic continuation and the functional

equation for Em,na (z, s). Petridis and Risager [77] used the analytic properties of the
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Goldfeld Eisenstein series to prove that modular symbols are asymptotically normally

distributed with respect to a certain arithmetic ordering.

In 2016, Mazur, Rubin and Stein proposed the study of the arithmetic distribution

of modular symbols for congruence subgroups in order to study the excess rank of elliptic

curves over abelian extensions. More specifically, let E an elliptic curve over Q of conductor

N and F/Q a finite abelian extension. Assuming the Birch–Swinnerton-Dyer conjecture,

we have

rankZE(F ) = rankZE(Q) +
∑

χ:Gal(F/Q)→C∗
χ 6=1

ords=1L(E,χ, s),

see [66, p. 6]. This implies that the study of excess rank is closely related to the vanishing

properties of the central values of the twisted Hasse–Weil L-function L(E,χ, 1). These

values are related to modular symbols by the Birch–Stevens formula, see [67, p. 10]. If χ

is a primitive Dirichlet character of conductor c, then

τ(χ)L(E,χ, 1)

Ωε
=

∑
a∈(Z/mZ)∗

χ(a)〈a/c〉ε,

where ε := χ(−1) is the sign of the character χ and τ(χ) is the corresponding Gauss sum.

This motivated Mazur and Rubin [66] to formulate a number of conjectures about the

distribution of modular symbols 〈a/c〉± with fixed denominator c. These conjectures have

received a lot of attention in recent years, see the work of Petridis–Risager [79], Bettin–

Drappeau [5], Blomer et al. [6, Chapter 9], Diamantis et al. [26], Lee–Sun [57], Sun [104],

Nordentoft [74].

Let f ∈ S2(Γ0(q)). We define the usual mean and variance for fixed level c for plus

modular symbols:

E(f, c) =
1

φ(c)

∑
a mod c
(a,c)=1

〈a/c〉+, Var(f, c) =
1

φ(c)

∑
a mod c
(a,c)=1

(〈a/c〉+ − E(f, c))2 .

We now state the conjectures of Mazur and Rubin about the behaviour of the asymptotic

normal distribution of modular symbols and the behaviour of the variance.

Conjecture 2.4.1. (i) There exists a constant Cf such that the limiting distribution of

the data {
〈a/c〉+

(Cf log c)1/2
: (c, q) = d, a ∈ (Z/cZ)∗

}
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is the standard normal distribution as c→∞.

(ii) For each divisor d of q, there is a constant Df,d such that

lim
c→∞

(c,q)=d

(Var(f, c)− Cf log c) = Df,d.

The constant Cf is called the variance slope, while Df,d is the variance shift.

Petridis and Risager [79] obtain an average version of Conjecture 2.4.1 for square-free

level q, where they consider the distribution of modular symbols on the larger set

Rd(X) =
{a
c
| 0 < a < c ≤ X, (a, c) = 1, (c, q) = d

}
.

We recall Theorem 1.2.1 from the Introduction.

Theorem 2.4.1. [79] Let f ∈ S2(Γ0(q), where q is a square-free integer.

(i) The values {
〈r〉+

(Cf logX)1/2
: r ∈ Rd(X)

}
have asymptotically a standard normal distribution as X →∞.

(ii) As X →∞,

1

#Rd(X)

∑
r∈Rd(X)

(〈r〉+)2 = Cf logX +Df,d + o(1).

Petridis and Risager work with the spectral theory of automorphic forms and Goldfeld

Eisenstein series. They give explicit formulas for Cf and Df,d and obtain results for any

cofinite Fuchsian group Γ. Using dynamics of continued fractions, Lee–Sun [57] give an

alternative proof of Theorem 1.2.1, building upon work of Baladi–Vallée [2] on dynamical

methods. Their method is however restricted to Γ0(N) and does not give a formula for

the variance.

In Chapter 3, we develop a new method to obtain distribution results for modular

symbols and recover Theorem 1.2.1. While still making use of the spectral theory of

Eisenstein series as in the work of Petridis–Risager, we apply the perturbation theory on

character varieties to obtain significantly easier proofs. Also, instead of using the method

of moments for proving convergence in distribution, we make use of the moment generator
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function and the Berry–Esseen inequality to obtain the limiting distribution with almost

optimal error terms. Furthermore, our approach can naturally recover the first and second

moments of the distribution and has the advantage that it can be naturally extended to

modular symbols in H3 and higher dimensions.

We remark that Conjecture 2.4.1(i) seems to be very hard and out of reach of both

spectral and dynamical methods. One reason is that the size of the family of modular

symbols in the conjecture is small, around square-root the size of the family in Theo-

rem 1.2.1. A version of Conjecture 2.4.1(ii) with c ranging over primes was achieved by

Blomer, Fouvry, Kowalski, Michel, Milićević and Sawin in [6, Theorem 9.2], using very

deep algebraic geometric methods.

These results have been generalised to higher weight modular forms. Using spec-

tral methods, Nordentoft [74] obtains normal distribution for central values of additively

twisted L-functions associated to cusp forms of general weight k and level N . In addition,

Bettin–Drappeau [5] use dynamical methods to obtain results for general weight k for

Γ = Γ0(1), and additional results for the distribution of quantum modular forms.

We also mention a conjecture of Mazur, Rubin and Stein about the partial first

moment of modular symbols. They conjectured that if 0 < x < 1 and f(z) =
∑∞

n=1 anq
n,

then

lim
c→∞

1

c

cx∑
a=1

[a/c]+ =

∞∑
n=1

an sin(πnx)

n2
.

This result was proved by Diamantis, Hoffstein, Kıral and Lee [26] (for arbitrary level

N and with explicit rate of convergence) and by Sun [104] for square-free level using

dynamical methods.

Remark 2.4.2. In [66], Mazur and Rubin also proposed the study of θ-coefficients. These

are given by sums of modular symbols of fixed denominator, where the numerators are

induced by elements fixed in cyclic Galois extensions of conductor m. Let ζm a primitive

m-th root of unity and σa ∈ Gal(Q(ζm)/Q) given by σa(ζm) = ζam. Let F ⊂ Q(ζm) and

δ ∈ Gal(F/Q). Then the θ-coefficients are given by

θ±F,δ :=
∑

a∈(Z/mZ)∗

σa|F=δ

[a/m]±
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Mazur and Rubin are interested in the distribution of the values

{θF,δ | F/Q cyclic of degree d and conductor m, δ ∈ Gal(F/Q) generic}.

Numerical analysis show that these values do not obey a normal distribution and very

little progress was achieved in this direction.

Mazur and Rubin [65] also formulated a conjecture about the distribution of the

normalised modular symbols [r]+. They suggested that [r]+ equidistribute modulo p as

we vary along fractions with fixed denominator.

Conjecture 2.4.2. Let p be a prime. The values {[a/c]+ | a ∈ (Z/cZ)∗} equidistribute

modulo p as c→∞, that is, for any l ∈ (Z/pZ),

#{a ∈ (Z/cZ)∗ | [a/c]+ ≡ l mod p}
φ(c)

=
1

p
+ o(1) as c→∞.

Recently, an average version of this conjecture was settled by Lee and Sun [57, The-

orem I] using dynamical methods. In Chapter 4 we introduce a new automorphic method

for studying the mod p distribution of modular symbols, which also applies to more gen-

eral cohomology classes. As is the case in [57], we obtain an average version of the mod

p conjecture of Mazur and Rubin (and its generalisations), but with further refinements.

We refer to Section 1.2.2 in the Introduction or Section 4.1 in Chapter 4 for statements of

our results regarding equidistribution modulo p of modular symbols.

2.5 Quantum Unique Ergodicity

Mass equidistribution of eigenfunctions is a central topic in quantum chaos and number

theory. We refer to [91] for an excellent survey on physical interpretations of QUE and

developements for hyperbolic arithmetic manifolds. As a starting point, let M be a com-

pact negatively curved Riemannian manifold. Then the geodesic flow is ergodic on its

contangent bundle. It is of interest the study the behaviour of masses of eigenfunctions

φj of the Laplace–Beltrami operator ∆ as the eigenvalue tends to infinity. The following

thoerem was proved by Šnirelman [108] and Colin de Verdière [16].

Theorem 2.5.1 (Quantum Ergodicity). Let M be a compact negatively curved Rieman-

nian manifold with the standard measure µ and the Laplace–Beltrami operator ∆. Let

{φj} an orthonormal basis of L2(M) formed of eigenfunctions of ∆ with corresponding
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eigenvalues λj. Then

|φjk |
2µ→ µ

in weak-* sense as k →∞, for some full density subsequence jk.

We turn our attention to the arithmetic modular surface X = SL2(Z)\H. If we ignore

for the moment the continuous spectrum, we restrict our attention the the eigenfuncions of

the Laplacian are the Hecke–Maaß cusp forms. Then the Quantum Ergodicity Conjecture

was proved in this case by Zelditch [113].

Motivated by this, Rudnick and Sarnak [87] conjectured that mass equidistribution

should hold for the full sequence of Laplace eigenfunctions. Lindenstrauss [59] famously

proved this conjecture, with a key input from Soundararajan [101].

Theorem 2.5.2 (Quantum Unique Ergodicity). Fix any ψ ∈ Cb(X). Then for any

sequence of Hecke–Maaß cusp forms φj of eigenvalues λj, we have that

〈
ψ, |φj |2

〉
→ 3

π
〈ψ, 1〉 as λj →∞.

The literature contains many examples of analogues of this problem. In [61], Luo–

Sarnak prove Quantum Unique Ergodicity for the Eisenstein series. They show that for

any measurable sets A and B with µ(B) > 0, we have

lim
t→∞

∫
A |E(z, 1/2 + it)|2dµ∫
B |E(z, 1/2 + it)|2dµ

=
µ(A)

µ(B)
.

Moreover, they actually compute the asymptotic growth explicitly

∫
A
|E(z, 1/2 + it)|2dµ ∼ 6

π
µ(A) log t.

Holowinsky and Soundararajan [44], [43], [102] prove an analogue of the Quantum Unique

Ergodicity for holomorphic cusp forms.

Theorem 2.5.3 (Holowinsky–Soundararajan). Let f be a holomorphic Hecke cusp form

of weight k that is L2-normalised such that
∫
X y

k|f(z)|2dµ(z) = 1 and let Fk = yk/2f(z).

Fix any φ smooth and bounded on X. Then we have

∫
X
yk|f(z)|2φ(z)

dxdy

y2
→ 3

π

∫
X
φ(z)

dxdy

y2
as k →∞;
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equivalently, this can be rewritten as

〈φFk, Fk〉 →
1

vol(X)
〈φ, 1〉 as k →∞.

Nelson generalised their results to congruence groups [72] and to compact surfaces [73].

Zelditch [114] and Jakobson [49], [50] looked at quantum ergodicity for the contangent

bundle SL2(Z)\SL2(R).

Holowinky and Soundararajan build upon two independent papers. Using sieve the-

ory, Holowinsky [43] obtains bounds for shifted convolution sums of multiplicative func-

tions. His approach fails to succeed when L(1, sym2f) is unusually large. Soundarara-

jan [102] uses a weak subconvexity result that fails when L(1, sym2f) is unusually small.

Combining the two approaches gives the desired result.

In Chapter 5, we generalise these results to off-diagonal terms, where we consider

two different eigencusp forms f and g of weights k1 and k2 respectively. We show that

correlations dissipate as max(k1, k2) → ∞. We refer to Theorems 5.1.1 and 5.1.2 for full

statements of our results. We obtain a result about joint distribution of masses in the

context of QUE, a subject with interesting recent results, see for example the work of

Brooks [8] on distribution of off-diagonal Eisenstein series 〈φE(·, r), E(·, r′′)〉 or Brooks–

Lindenstrauss [9] on joint quasimodes of the Laplacian.

Our new ingredient is to incorporate the spectral theory of weight k automorphic func-

tions to the method of Holowinsky–Soundararajan. Denote by Lk(X) the space of square-

integrable weight k automorphic forms. Using the spectral decomposition of Lk2−k1(X),

it is enough to obtain bounds for
〈
φy

k1
2 f, y

k2
2 g
〉

, where φ is a Maaß cusp form of weigh

k2 − k1. We have two approaches, depending on the size of

S(f, g) := L(1, sym2f)L(1, sym2g). (2.25)

Firstly, we can compute directly the inner products, using Rankin–Selberg unfolding for

the Eisenstein series and Ichino’s formula for the Maaß cusp form case, see Section 5.3.

The formulas will involve central values of L-functions, to which we apply the weak sub-

convexity results of Soundararajan. This will win if S(f, g) is large.

Alternatively, we can expand the inner products in terms of the Fourier expansions.

We need bounds for the Fourier coefficients of weight k automorphic forms, which we
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compute in Section 5.4. This approach boils down to bounding shifted convolution sums,

where we apply the results of Holowinsky, see Section 5.5. This will win if S(f, g) is

sufficiently small.

2.6 Geometry of hyperbolic upper half-space H3

We refer to [32, Chapters 1-2] for a valuable exposition of the geometry of the hyperbolic

3-space and of the groups acting on it. We define the three-dimensional hyperbolic space

H3 as

H3 := C× (0,∞) = {(z, y) | z ∈ C, y > 0} = {(x1, x2, y) | x1, x2 ∈ R, y > 0} .

We denote the points in H3 by

P = (z, y) = z + yj, where z = x1 + ix2, j = (0, 0, 1) .

We equip H3 with the hyperbolic metric coming from the line element:

ds2 =
dx2

1 + dx2
2 + dy2

y2
. (2.26)

The volume element is given by

dv =
dx1dx2dy

y3
.

The hyperbolic Laplace–Beltrami operator is given by

∆ = y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂y2

)
− y ∂

∂y
. (2.27)

The group PSL2(C) acts on H3 via isometries. The action of γ =

a b

c d

 ∈ PSL2(C) is

given by

(z, y) 7→

(
(az + b)(cz + d) + acy2

|cz + d|2 + |c|2y2
,

y

|cz + d|2 + |c|2y2

)
. (2.28)

Let Γ ≤ PSL2(C) be any cofinite Kleinian group with cusps. The theory of such

objects is thoroughly developed in [32, Chapter 2]. Let a ∈ P1(C) be a cusp for Γ with

scaling matrix σa ∈ PSL2(C) such that σa∞ = a. We let Γa = {γ ∈ Γ : γa = a} be the
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stabilizer of a in Γ. We define

Γ′a = Γa ∩ σa


1 b

0 1

 : b ∈ C

σ−1
a .

We note that Γ′a consists of the parabolic elements in Γa together with I.

There exists a lattice Λa ≤ C such that

σ−1
a Γ′aσa =


1 λ

0 1

 : λ ∈ Λa

 .

We let Pa be a period parallelogram for Λa with Euclidean area |Pa|. We define Λ∗a the

dual lattice of Λa:

Λ∗a = {µ ∈ C : 〈µ, λ〉 ∈ Z for all λ ∈ Λa} , (2.29)

where 〈·, ·〉 is the usual scalar product on R2 = C.

Since Γ is a Kleinian group, there exists a constant cab > 0 defined by

cab := min

|c| :

a b

c d

 ∈ σ−1
a Γσb, c 6= 0

 . (2.30)

Say a1, · · · , ah ∈ P1(C) are representatives for the Γ-classes of cusps. For Y > 0, we

define the cuspidal sectors

Fai(Y ) = σai{z + yj : z ∈ Pai , y ≥ Y } .

Then for Y0 large enough, there exists a fundamental domain F which we can write as a

disjoint union

F = F0 ∪ Fa1(Y0) ∪ · · · ∪ Fah(Y0) , (2.31)

where F0 is a compact set.

We denote by Tab a system of representatives

∗ ∗
c ∗

 of the double cosets in

σ−1
a Γ′aσa\σ−1

a Γσb/σ
−1
b Γ′bσb
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with c 6= 0 and

Tab(X) =


∗ ∗
c ∗

 ∈ Tab : 0 < |c| ≤ X

 .

Also, we define

Rab :=

ac mod Pa :

a b

c d

 ∈ Tab
 .

Lemma 2.6.1. The map

Tab → Rab

γ 7→ γ∞ mod Pa

is [Γb : Γ′b]-to-one.

Proof. We follow the lines of [79, Proposition 2.2] or [47, p. 50], where it is shown that

the map is one-to-one in the two-dimensional case. Let γ, γ′ ∈ Tab with

γ =

a b

c d

 and γ′ =

a′ b′

c′ d′


and r = γ∞, r′ = γ′∞. We may assume r, r′ ∈ Pa. Then the matrix γ′′ = γ′−1γ ∈ σ−1

b Γσb

has lower left entry c′′ = −ac′ + a′c.

If c′′ 6= 0, then

| − r + r′| =
∣∣∣∣ c′′cc′

∣∣∣∣ > 0 .

Therefore r 6= r′, hence r 6≡ r′ mod Pa.

If c′′ = 0, then r = r′ and γ′′ ∈ (σ−1
b Γσb)∞ = σ−1

b Γbσb. Since we assume γ, γ′ ∈ Tab,

there are [σ−1
b Γbσb : σ−1

b Γ′bσb] = [Γb : Γ′b] possible choices for γ′′.

2.7 Higher dimensional hyperbolic spaces

We introduce the upper half-space (Poincaré) model Hn+1 for the (n + 1)-dimensional

hyperbolic space. We briefly describe some geometric and arithmetic properties of the

space Γ\Hn+1, where Γ is a cofinite discrete subgroup of isometries. We make use of a

specific model for the group of isometries given in terms of a certain Clifford algebra. Our

main references for this section are [1], [30] and [31].
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2.7.1 Clifford algebra

We will now describe the upper-half space model Hn+1 for hyperbolic (n + 1)-space. Let

q : Rn → R a non-degenerate quadratic form and C(q) the associated Clifford algebra, i.e.

the free R-algebra on {e1, . . . , en} modulo the relations

e2
i = q(ei), eiej = −ejei, where i, j = 1, · · · , n, i 6= j,

where e1, . . . , en is a q-orthonormal basis for Rn. We denote by En the set of all subsets

of {1, . . . , n}. Then for M = {i1, . . . , ik} ∈ En with i1 < · · · < ik, we define

eM := ei1 · · · · · eik , e∅ := 1 ∈ C(q).

Then one can check that {eM |M ∈ En} is a R-basis for C(q).

We have two linear involutions on C(q) given by

eM := (−1)|M |(|M |+1)/2eM , e∗M := (−1)|M |(|M |−1)/2eM , where M ∈ En.

These satisfy

vw = w v, (vw)∗ = w∗v∗, for all v, w ∈ C(q).

From now on we assume that q = −In, the negative definite unit form, and e1, . . . , en

the standard basis. In this case we write Cn for C(q). We denote by Vn ⊂ Cn the vector

space spanned by {1, e1, . . . , en}. It is easy to see that V0
∼= R and V1

∼= C as R-algebras.

Vn is equipped with the inner product

〈v, w〉 =
1

2
(vw + vw).

We note that this coincides with the standard Euclidean inner product if we identify Vn

with Rn+1 using the basis {1, e1, . . . , en}.

For x =
∑

M∈En λMeM ∈ Cn, we define the norm

|x| :=

( ∑
M∈En

λ2
M

)1/2

. (2.32)

We note that for x ∈ Vn, we have |x|2 = 〈x, x〉. Now, if Λ < Vn is a lattice, we define the
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dual lattice as

Λ∗ := {w ∈ Vn | 〈v, w〉 ∈ Z for all v ∈ Λ}.

We now define the following model of hyperbolic (n+ 1)-space:

Hn+1 := {x0 + x1e1 + · · ·+ xnen | x0, x1, . . . , xn−1 ∈ R, xn > 0} .

We have the maps x : Hn+1 → Vn−1 and y : Hn+1 → (0,∞) given by

x(P ) := x0 + x1e1 + · · ·+ xn−1en−1, y(P ) := xn,

where P = x0 + x1e1 + · · ·+ xnen ∈ Hn+1. We can think of x(P ) as an element of Rn via

the above. Then from (2.32) we see that

|P |2 = |x(P )|2 + |y(P )|2.

We equip Hn+1 with the hyperbolic metric coming from the line element:

ds2 =
dx2

0 + dx2
1 + · · ·+ dx2

n

x2
n

, (2.33)

which makes Hn+1 a Riemannian manifold with constant negative curvature −1. The

volume element is given by

dv =
dx0dx1 . . . xn

xn+1
n

.

The hyperbolic Laplace–Beltrami operator is given by

∆ = x2
n

(
∂2

∂x2
0

+
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
− (n− 1)xn

∂

∂xn
(2.34)

in this model.

2.7.2 Vahlen group

We will use the above upper-half space model to describe the group of (oriented) isometries

Isom+(Hn+1) in a way that is convenient for our purposes. We let Tn ⊂ Cn be the

multiplicative subgroup generated by Vn \ {0}. As in [1, p. 219] or [31, p. 648], we define
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the Vahlen group SVn to be

SVn :=


a b

c d

 ∈M2(Cn)

(i) a, b, c, d ∈ Tn ∪ {0}

(ii) ab, cd ∈ Vn

(iii) ad∗ − bc∗ = 1

 . (2.35)

We can easily check that SV0 = SL2(R) and SV1 = SL2(C) as R-algebras. Then it is a

non-trivial fact that SVn is a group under matrix multiplication with inverse

a b

c d

−1

=

 d∗ −b∗

−c∗ a∗

 . (2.36)

We can now define the action of SVn−1 on Hn+1, which resembles the actions of

SL2(R) and SL2(C) on H2 and H3, respectively, as can be seen from the following result.

Theorem 2.7.1. [31, Theorem 1.3] Let γ =
(
a b
c d

)
∈ SVn−1 and P ∈ Hn+1. Then

cP + d ∈ Tn and we define

γP := (aP + b)(cP + d)−1 ∈ Hn+1, (2.37)

where multiplication and taking inverses is possible since we work with elements of the

multiplicative group Tn. The map P 7→ γP is an orientation preserving isometry of Hn+1.

Moreover, all orientation preserving isometries are obtained in this way and we have the

induced isomorphism SVn−1/{I,−I} ∼= Isom+(Hn+1).

What is convenient about this description of Isom+(Hn+1) is that one gets very famil-

iar expressions for the coordinate-projections of the image under the action of γ ∈ SVn−1

on P = (x, y) ∈ Hn+1.

Lemma 2.7.1. [31, page 648] Let γ =

a b

c d

 ∈ SVn−1 and P = x+yen ∈ Hn+1. Then

x(γP ) =
(ax+ b)(cx+ d) + acy2

|cx+ d|2 + |c|2y2
and y(γP ) =

y

|cx+ d|2 + |c|2y2
. (2.38)

Remark 2.7.2. Our model for the hyperbolic (n+1)-space is consistent with other descrip-

tions from the literature. For example, one can consider the Klein model Kn+1 on which

isometries are described by SO(n+ 1, 1). Then there exists an bijection Φ : Hn+1 → Kn+1
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and an isomorphism Ψ : SVn−1/{±I}
∼−→ SO(n+ 1, 1)0 which commutes with the respec-

tive actions, i.e. Φ(γ ·P ) = Ψ(γ)Φ(P ), for all γ ∈ SVn−1 and P ∈ Hn+1. Here SO(n+1, 1)0

is the connected component of the identity element in SO(n+1, 1). We refer to [30, Section

5] for detailed descriptions of different models of the hyperbolic space.

2.7.3 Hyperbolic quotients

Let Γ < SVn−1 be a discrete subgroup of motions such that the surface Γ\Hn+1 has finite

hyperbolic volume. We say that a ∈ Rn∪{∞} is a cusp for Γ if it is fixed by a non-identity

element in Γ. Then there exists a scaling matrix σa ∈ SVn−1 such that σa∞ = a. We let

Γa := {γ ∈ Γ | γa = a} be the stabilizer of a in Γ. We define

Γ′a := Γa ∩ σa


1 b

0 1

 ∈ SVn−1

σ−1
a .

We note that Γ′a consists of the parabolic elements in Γa together with the identity.

There exists a lattice Λa ≤ Rn such that

σ−1
a Γ′aσa =


1 λ

0 1

 | λ ∈ Λa

 .

We let Pa be a fundamental parallelogram for Λa with Euclidean area vol(Λa).

We define the dual lattice of Λ∗a as follows:

Λ∗a := {µ ∈ Rn | 〈µ, λ〉 ∈ Z for all λ ∈ Λa} , (2.39)

where 〈·, ·〉 is the usual scalar product on Rn.

For a cusp a and Y > 0, we define the cuspidal sector

Fa(Y ) := σa{(x, y) | x ∈ Pa, y > Y } .

Then for Y large enough, there exists a fundamental domain F for Γ\Hn+1 and inequiv-

alent cusps a1, · · · , ah ∈ Rn ∪ {∞} such that we can write F as the disjoint union

F = F0 t Fa1(Y ) t · · · t Fah(Y ) , (2.40)

where F0 is a compact set, see [100, p. 8] or [89, p. 5].
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For notational convenience, from now on we will focus only on the cusp at ∞. We

drop the subscript by denoting Λ := Λ∞, P := P∞ etc. Our theory can be generalised to

take all cusps into account.

We will now define our outcome space (4.5) in precise terms. First we note that all

elements in Γ′∞\Γ/Γ′∞ share the same lower left entry. Thus it makes sense to define

TΓ(X) :=


∗ ∗
c ∗

 ∈ Γ′∞\Γ/Γ′∞ | 0 < |c| ≤ X

 ,

where |c| denotes the Clifford norm (2.32). This is the natural generalisation of the

outcome space considered by Petridis–Risager in [79, p. 1002]. In (4.22) below, we provide

an asymptotic formula for the size of TΓ(X). We put

C(Γ) :=

c ∈ Tn | ∃a, b, d ∈ Tn :

a b

c d

 ∈ Γ

 . (2.41)

If γ =
(
a b
c d

)
∈ Γ then from the definition of the action (2.37), we see that γ∞ = ac−1,

where γ∞ is defined as the limit of γP as P tends to the cusp at∞. Also, from [31, Lemma

1.4], we know that ac−1 ∈ Vn−1.

We observe that γ∞ is well-defined on double cosets in Γ′∞\Γ/Γ′∞ up to translations

by the lattice Λ. Therefore we see that the map

Γ′∞\Γ/Γ′∞ → Rn/Λ ∪ {∞},

γ 7→ γ∞,

is well-defined using the identification of Vn−1 with Rn as above. A simple consequence

of our main theorems is that γ∞ become equidistributed on Rn/Λ as we vary along

γ ∈ TΓ(X) as X →∞.



Chapter 3

Distribution of modular symbols in H3

This chapter is mainly based on [18].

3.1 Introduction

Let K be a quadratic number field of class number one, OK its ring of integers and n a

non-zero ideal of OK . In a series of papers [22], [23], [21], Cremona uses modular symbols

to study the arithmetic correspondence between isogeny classes of elliptic curves defined

over K of conductor n and Hecke cusp forms of weight 2 for the congruence subgroup

Γ0(n). More precisely, the Hasse–Weil L-function L(E, s) of an elliptic curve E and the

L-function L(F, s) attached to a cusp form F are conjectured to be the same as part of the

‘Langlands philosophy’. Modular symbols are given by central values L(F,ψ, 1), where ψ

is an additive twist, and they can be used to compute numerically the central value L(F, 1),

which agrees with the value L(E, 1) predicted by the Birch–Swinnerton-Dyer conjecture.

We prove that when n is a square-free ideal of OK and F a newform of weight 2 and level

n, modular symbols coming from F obey asymptotically the standard normal distribution

when ordered and normalised appropriately.

We develop a new method to obtain distribution results for modular symbols. While

still making use of the spectral theory of Eisenstein series as in the work of Petridis–Risager,

we apply the perturbation theory on character varieties to obtain significantly easier proofs.

Also, instead of using the method of moments for proving convergence in distribution, we

make use of the moment generating function and the Berry–Esseen inequality to obtain

the limiting distribution with almost optimal error terms. Furthermore, our approach can

naturally recover the first and second moments of the distribution and has the advantage

that it can be naturally extended to modular symbols in H3.

We now describe the set-up for the case of cofinite groups Γ of PSL2(R), as in the work
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of Petridis–Risager. Let a and b be two cusps (not necessarily equivalent) with scaling

matrices σa and σb. We define general modular symbols as

〈r〉ab =

∫ σar

b
α,

where α is a harmonic 1-form and

r ∈ Tab(X) =

ac mod 1 ,

a b

c d

 ∈ Γ∞\σ−1
a Γσb/Γ∞ , 0 < c < X

 .

Petridis–Risager obtain the following average results of Conjecture 2.4.1.

Theorem 3.1.1 (Petridis–Risager [79]). There exist explicit constants Cf , Df,ab such that

(a) (Normal distribution) The values of

Tab(X)→ R,
a

c
7→ 〈a/c〉√

Cf log c

have asymptotically a standard normal distribution as X →∞.

(b) (Second moment) As X →∞,

∑
r∈Tab(X)〈r〉2ab
#Tab(X)

= Cf logX +Df,ab + o(1).

Here is a statement for our results. There is a natural action of PSL2(C) on H3 via

isometries. Let Γ ≤ PSL2(C) be a cofinite discrete subgroup. For each cusp a, we denote

by Γ′a the set of parabolic elements in Γ that fix a. Then there exists a lattice Λa ≤ C

such that

σ−1
a Γ′aσa =


1 λ

0 1

 : λ ∈ Λa

 .

We note that we require this extra notation since, unlike the two dimensional case,

we only know that Γ′a is a subgroup of finite index of the stabilizer subgroup Γa and that

for two cusps a and b, the period lattices Λa and Λb may be different.

Now, for a, b two cusps for Γ (not necessarily distinct), we define

Rab(X) =

r =
a

c
mod Λa ,

a b

c d

 ∈ σ−1
a Γ′aσa\σ−1

a Γσb/σ
−1
b Γ′bσb , 0 < |c| < X

 .
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We prove the following theorem.

Theorem 3.1.2. Let α be a real-valued, Γ-invariant, cuspidal one-form.

(a) (Normal distribution) For every a, b ∈ [−∞,∞] with a ≤ b, and any ε > 0, for X

large enough,

#
{
r ∈ Rab(X) , 〈r〉ab√

Cα logX
∈ [a, b]

}
#Rab(X)

=
1√
2π

∫ b

a
exp

(
− t

2

2

)
dt+Oε

(
(logX)−1/2+ε

)
,

where

Cα =
4‖α‖22

vol(Γ\H3)
. (3.1)

(b) (First moment) There exists a constant δ > 0 such that∑
r∈Rab(X)〈r〉ab
#Rab(X)

=

∫ a

b
α+O

(
X−δ

)
.

(c) (Second moment) There exists an explicit constant Dα,ab, called the variance shift,

and a constant δ > 0 such that∑
r∈Rab(X)〈r〉2ab
#Rab(X)

= Cα logX +Dα,ab +O
(
X−δ

)
, as X →∞ .

Remark 3.1.1. The error term in Theorem 3.1.2(a) is expected to be optimal up to ε,

see [5]. It seems to be difficult to obtain a good error term using the method of moments

approach.

Remark 3.1.2. Theorem 3.1.2(b) is a generalisation of [79, Cor. 7.3] with x = 1, where

Petridis–Risager obtain stronger results about first moment with additional restrictions

on the set Rab(X).

Remark 3.1.3. We do not obtain an explicit value for Dα,ab, but we can write it in terms

of the coefficients of a certain Taylor expansion, see (3.48) for more details. For the case

of H2, the variance shift was explicitly calculated in [79].

We obtain the following corollary for imaginary quadratic number fields. Let K be a

quadratic imaginary field of class number one and n a square-free ideal. Let F ∈ S2(Γ(n))

be a cuspidal newform of weight 2 and level n, which is a vector-valued function F : H3 →
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C3. For r ∈ K, we define the modular symbol

〈r〉 =

∫ r

i∞
F · β ∈ R ,

where β is a specific fixed basis for the invariant 1-forms. We rigorously introduce these

objects in Section 7.

Corollary 3.1.1. Let K be a quadratic number field of class number one. Let n C OK a

square-free ideal with generator 〈n〉 = n and F ∈ S2(Γ0(n)). For d|n, set

Qd(X) = {a/c | a ∈ (OK/〈c〉)× , 〈c, n〉 = d , 0 < |c| < X}.

(a) There exists a constant CF such that the data

K ∩Qd(X)→ R,
a

c
7→ 〈a/c〉√

CF logX

has asymptotically a standard normal distribution.

(b) There exists a constant DF,d such that

1

|Qd(X)|
∑

a/c∈Qd(X)

〈a
c

〉2
= CF logX +DF,d + o(1) .

Remark 3.1.4. We provide explicit value for CF in terms of the Petersson norm of F and

our base quadratic imaginary field K, see (3.55).

The structure of this chapter is as follows. In Section 3.2 we introduce th elementary

properties of modular symbols associated to cuspidal one-forms on Γ\H3.

In Section 3.3 we study the Eisenstein series and Poincaré series twisted by modular

symbols. We introduce the generating series Lab(s, ε) and obtain some of their essential

analytic properties. We also provide upper bounds for modular symbols.

In Section 3.4 we study the perturbation theory of the space L2(Γ\H3, χε), where

χε is a unitary character given by modular symbols. We obtain Taylor expansions for

the smallest eigenvalue of the Laplacian λ0(ε) and for s0(ε), the first pole of Lab(s, ε).

Moreover, we study the behaviour of the residue of Lab(s, ε) at s0(ε).

In Section 3.5 we relate the moment generating function for the distribution of mod-

ular symbols to our generating series Lab(s, ε). We recover the first two moments of the
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distribution. In addition, we show that Rab is equidistributed in the period lattice Λa.

In Section 3.6 we prove that modular symbols are normally distributed. We use the

Berry–Esseen inequality and the perturbation theory results developed earlier.

In Section 3.7 we obtain results for congruence subgroups of PSL2(OK), where K is

a quadratic imaginary number field of class number one. We relate modular symbols to

special values of L-functions coming from newforms of weight 2 and level n, where n is a

square-free ideal of OK . We develop some properties of these L-functions.

3.2 Modular symbols in H3

We refer to Section 2.6 for an introduction to the properties of the quotient space Γ\H3,

where Γ < SL2(C) a cofinite subgroup with cusps. We denote by H∗ := H3 ∪ C ∪ {∞}

the extended upper half-space and consider the compactified quotient space XΓ = Γ\H∗.

If A,B ∈ H∗ are Γ-equivalent, i.e. there exists some γ ∈ Γ such that B = γ(A), then

the family of smooth paths from A to B in H∗ determines a unique homology class in

H1(XΓ,Z). In fact, the class depends only on γ and we have the surjective map

Φ : Γ→ H1(XΓ,Z), γ 7→ {∞, γ∞}

which induces the canonical isomorphism

H1(XΓ,Z) ∼= Γ/[Γ,Γ] .

We consider the de Rham cohomology group H1
dR(XΓ,C) and inside of it we have

H1
c (XΓ,C) consisting of cohomology classes represented by forms of compact support.

Every member of H1
c (XΓ,C) has a unique harmonic representative. We provide a sketch

argument showing that H1(XΓ,C) and H1
c (XΓ,C) are dual to each other.

Note that in general XΓ may not be a manifold, since Γ may contain elements of

finite order (XΓ is called an orbifold). However, it is a result of Selberg [94, p. 482] that

if Γ < GLn(C) is a finitely generated subgroup, then Γ has a torsion free subgroup Γ′ of

finite index. Then XΓ′ is a manifold and the finite quotient group Γ̄ := Γ/Γ′ acts on it.

We have the exact Poincaré pairing between homology and cohomology for XΓ′

H1(XΓ′ ,C)×H1
c (XΓ′ ,C)→ C, (C,α) 7→

∫
C
α .



3.2. Modular symbols in H3 62

In this duality, if we restrict to forms invariant under Γ̄, we recover H1
c (XΓ,C) and can

show that there is also an exact duality between H1(XΓ,C) and H1
c (XΓ,C). For more

details, see [22, p. 43].

Definition 3.2.1. A harmonic 1-form α = f1dx1 + f2dx2 + f3dy on Γ\H3 is a cuspidal

1-form if

1. α is rapidly decreasing at all cusps;

2. for each cusp a and y ≥ 0,

∫
Pa

fa,idx1dx2 = 0 , i = 1, 2, 3 ,

where σ∗aα = fa,1dx1 + fa,2dx2 + fa,3dy is the pullback by σa.

As in [89], we denote the space of cuspidal 1-forms by H1
cusp(XΓ,C). We note that

any cuspidal form is cohomologous to a form of compact support, i.e. if α is a cusp form,

there exists α̃ ∈ H1
c (XΓ,C) such that

∫
Φ(γ)

α =

∫
Φ(γ)

α̃, for all γ ∈ Γ ,

and we have the isomorphism

H1
cusp(XΓ,C) ' H1

c (XΓ,C) .

A detailed construction of the above isomorphism can be found in [77, Proposition

2.1]. With this in mind, for γ ∈ Γ and α ∈ H1
cusp(XΓ,C), we define the modular symbol

〈γ, α〉 as

〈γ, α〉 :=

∫
Φ(γ)

α =

∫ γP0

P0

α (3.2)

for any P0 ∈ H∗. From this definition, we can easily see that, for γ1, γ2 ∈ Γ,

〈γ1γ2, α〉 =

∫ γ1γ2P

P
α =

∫ γ2P

P
α+

∫ γ1γ2P

γ2P
α = 〈γ1, α〉+ 〈γ2, α〉 .

We note that if α is a cuspidal form, then for any parabolic γ ∈ Γ,

〈γ, α〉 =

∫ γP0

P0

α = 0 .
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In particular, 〈γ, α〉 = 0, for all γ ∈ Γ′a, for all cusps a.

We remark that our definition for the modular symbol 〈γ, α〉 agrees with the previous

definition 〈r〉ab. Indeed, if γ ∈ σ−1
a Γσb with r = γ∞, then

〈r〉ab =

∫ σaγ∞

b
α =

∫ σaγσ
−1
b b

b
α =

〈
σaγσ

−1
b , α

〉
. (3.3)

If α ∈ H1
cusp(XΓ,C) is real-valued, we have a family of unitary characters χε : Γ→ S1

defined by

χε(γ) := exp (2πiε 〈γ, α〉) . (3.4)

If α, β ∈ H1
cusp(XΓ,C) with α = f1dx1 + f2dx2 + f3dy and β = g1dx1 + g2dx2 + g3dy,

we define the pointwise inner-product

[α, β] := y2(f1g1 + f2g2 + f3g3) . (3.5)

Since α and β are Γ-invariant 1-forms, one can see that [α, β] is a Γ-invariant function

from H3 to C. In particular, since α is rapid decreasing in the cusps, we conclude that

[α, α] is bounded on H3, which in turn implies that

|fi(P )| � 1

y
, for all P ∈ H3, i = 1, 2, 3. (3.6)

Now, for α, β ∈ H1
cusp(XΓ,C), we define the Petersson inner product

〈α, β〉 :=

∫
Γ\H3

[α, β]dv , (3.7)

and the L2-norm

‖α‖22 := 〈α, α〉 . (3.8)

3.3 Generating series for modular symbols

In this section we define a generating series for modular symbols Lab(s, ε). This we relate

to the twisted Eisenstein series and Poincaré series by characters and derive some of their

essential analytic properties.
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3.3.1 Twisted Eisenstein series by modular symbols

We define the twisted Eisenstein series

Ea(P, s, ε) =
∑

γ∈Γ′a\Γ

χε(γ)y(σ−1
a γP )s , (3.9)

where χε is defined as in (3.4).

The theory of Eisenstein series in H3 (without a twist) is developed in [32, Chapter 3]

and [32, chapter 6.1]. We have to modify it slightly since we consider twisted Eisenstein

series, so we follow the steps in Selberg’s Göttingen lecture notes [94, p. 638-654]. They

are absolutely convergent for Re(s) > 2. In the area of absolute convergence they satisfy

Ea(γP, s, ε) = χε(γ)Ea(P, s, ε) ,

−∆Ea(P, s, ε) = s(2− s)Ea(P, s, ε) .

We note that the function P 7→ Ea(σbP, s, ε) is invariant under the action of the lattice

Λb corresponding to σ−1
b Γ′bσb = (σ−1

b Γσb)
′
∞. We would like to write a Fourier expansion

with respect to the dual lattice Λ∗b. With this in mind, for µ1 ∈ Λ∗a, µ2 ∈ Λ∗b, we define

the twisted generating series by

Lab(s, µ1, µ2, ε) :=
∑
γ∈Tab

χε(σaγσ
−1
b )e

(〈
µ1,

a
c

〉
+
〈
µ2,

d
c

〉)
|c|2s

, (3.10)

where the sum is over γ =

a b

c d

 ∈ Tab. If µ1 = µ2 = 0, we just denote Lab(s, 0, 0, ε) =:

Lab(s, ε).

We quote [32, Theorem 3.4.1] to obtain Fourier expansion of Ea(σbP, s, ε):

Ea(σbP, s, ε) = δab[Γa : Γ′a]y
s + φab(s, ε)y

2−s +
∑

06=µ∈Λ∗b

|µ|s−1φab(s, µ, ε) y Ks−1(2π|µ|y) e(〈µ, z〉) ,

(3.11)

where

φab(s, ε) :=
π

|Pb|(s− 1)
Lab(s, ε), φab(s, µ, ε) :=

2πs

|Pb|Γ(s)
Lab(s, 0, µ, ε) (3.12)
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and K denotes the K-Bessel function.

If a1, · · · , ah ∈ P1(C) are the inequivalent cusps for Γ\H3, we define

Ei(P, s, ε) :=
1

[Γai : Γ′ai ]
Eai(P, s, ε) and φij(s, ε) =

1

[Γai : Γ′ai ]
φaiaj (s, ε) .

We let

E(P, s, ε) :=


E1(P, s, ε)

...

Eh(P, s, ε)

 and Φ(s, ε) := (φij(s, ε)) .

We call Φ the scattering matrix. Then both E(P, s, ε) and Φ(s, ε) have meromorphic

continuation to all of C. The following functional equation is satisfied:

E(P, 2− s, ε) = Φ(2− s, ε)E(P, s, ε) .

Also, poles of E(P, s, ε) occur only where Φ(s, ε) has poles and vice versa. In the

region Re s > 1, there are only finitely many simple poles, and they are on the interval

1 < s ≤ 2 of the real line. If 1 < σ ≤ 2 is a pole of Ea(P, s, ε), we define

ua,σ(P, ε) = Ress=σ Ea(P, s, ε) . (3.13)

We denote by L2(Γ\H3, χε) the space of all square-integrable functions f over Γ\H3

that satisfy f(γP ) = χε(γ)f(P ), for all γ ∈ Γ. Then ua,σ(P, ε) ∈ L2(Γ\H3, χε) and

moreover

(∆ + σ(2− σ))ua,σ(·, ε) = 0 . (3.14)

We study the spectral theory of L2(Γ\H3, χε) in Section 3.4.1. The spectrum of

−∆ on L2(Γ\H3, χε) contains a finite number of discrete eigenvalues in [0, 1), call them

0 ≤ λ0(ε) ≤ λ1(ε) ≤ · · · ≤ λk(ε) < 1. Then Ea(P, s, ε) is meromorphic for Re(s) > 1 and

has possible poles at sj(ε) corresponding to λj(ε), so that sj(ε)(2− sj(ε)) = λj(ε).

3.3.2 Twisted Poincaré series by modular symbols

We now introduce the twisted Poincaré series, extending the definition of Sarnak in [88].

We will use them to obtain an integral representation for the series Lab(s, 0, µ, ε) and to

find the residue of Lab(s, 0, µ, 0) at s = 2.
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For µ ∈ Λ∗a, we define

Ea,µ(P, s, ε) :=
∑

γ∈Γ′a\Γ

χε(γ)y(σ−1
a γP )se−2π|µ|y(σ−1

a γP )e(〈z(σ−1
a γP ), µ〉) . (3.15)

We observe that for Re(s) > 2, the series converges absolutely, since it is certainly domi-

nated by the Eisenstein series. Also, since the function y(σ−1
a P )se−2π|µ|y(σ−1

a P )e(〈z(σ−1
a P ), µ〉)

is Γ′a-invariant, it follows that Ea,µ(P, s, ε) satisfies

Ea,µ(γP, s, ε) = χε(γ)Ea,µ(P, s, ε)

and that Ea,µ(σbP, s, ε) is Λb-invariant. Additionally, it is easy to check that for Re(s) > 2

and µ 6= 0,

Ea,µ(P, s, ε) ∈ L2(Γ\H, χε). (3.16)

An easy computation shows that

(∆ + s(2− s))Ea,µ(P, s, ε) = 2π|µ|(1− 2s)Ea,µ(P, s+ 1, ε), (3.17)

which can be rewritten as

Ea,µ(P, s, ε) = 2π|µ|(1− 2s)R(s(2− s), ε)(Ea,µ(P, s+ 1, ε)), (3.18)

where R(λ, ε) is the resolvent of ∆ on L2(Γ\H3, χε) at λ. We have that R(s(2 − s), ε) is

meromorphic for Re(s) > 1 and has possible poles at sj(ε). Hence, from (3.16) and (3.18),

it follows that Ea,µ(P, s, ε) may be analytically continued to Re(s) > 1, with possible poles

at sj(ε).

Next, we want to use the Poincaré series to obtain an integral representation for the

generating series Lab(s, 0, µ, ε).

Lemma 3.3.1. Let µ ∈ Λ∗b \ {0} and Re(s),Re(w) > 2. Then we have the integral

representation

Lab(s, 0, µ, ε) =
|P|(4π|µ|)w−1

2πs+1/2|µ|s−1

Γ(s)Γ(w − 1/2)

Γ(w + s− 2)Γ(w − s)

∫
Γ\H3

Ea(P, s, ε)Eb,µ(P,w, ε)dv .
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Proof. We use a standard unfolding technique together with (3.11) and (3.15) to obtain

∫
Γ\H3

Ea(P, s, ε)Eb,µ(P,w, ε)dv =

∫ ∞
0

∫
Pb

Ea(σbP, s, ε)y
we−2π|µ|ye(−〈z, µ〉)dx1dx2dy

y3

=

∫ ∞
0

ywe−2π|µ|y|Pb||µ|s−1φab(s, µ, ε) y Ks−1(2π|µ|y)
dy

y3

=Lab(s, 0, µ, ε)
2πs

Γ(s)
|µ|s−1

√
π

(4π|µ|)w−1

Γ(w + s− 2)Γ(w − s)
Γ(w − 1/2)

,

where we have used [47, p. 205] for the integral of the Bessel function.

Remark 3.3.1. Since Poincaré series are orthogonal to constants, or using the above cal-

culation, it follows that, for µ ∈ Λ∗b \ {0},∫
Γ\H3

Eb,µ(P, s, 0)dv = 0 .

Next we want to use Lemma 3.3.1 to find the analytic properties of Lab(s, 0, µ, 0) at

s = 2.

Lemma 3.3.2. For µ ∈ Λ∗b, the series Lab(s, 0, µ, ε) admits meromorphic continuation to

s ∈ C. At s = 2, Lab(s, 0) has a pole with residue

Ress=2 Lab(s, 0) =
|Pa||Pb|[Γa : Γ′a]

πvol(Γ\H3)

while for µ 6= 0, Lab(s, 0, µ, 0) is holomorphic at s = 2.

Proof. Since the Eisenstein series Ea(P, s, ε) admits meromorphic continuation to s ∈ C,

its Fourier coefficients admit meromorphic continuation as well. Hence from (3.11) and

(3.12), we obtain meromorphic continuation for Lab(s, 0, µ, ε).

When µ = 0, we make use of the Maaß–Selberg relations in H3 [32, p. 110], which

tell us the behaviour of truncated Eisenstein series. We define

EYa (P, s, ε) :=


Ea(z, s, ε)− δab[Γa : Γ′a](Imσ−1

b P )s − φab(s, ε)(Imσ−1
b P )2−s, if P ∈ Fb(Y ),

Ea(P, s, ε), if P ∈ F(Y ),

where we have the disjoint union of the fundamental domain F = F(Y ) ∪ Fa1(Y ) ∪ · · · ∪

Fah(Y ) as in (2.31). Thus, by removing the cuspidal contribution, Ea(P, s, ε) is square-

integrable. The Maaß–Selberg relations give us a formula for
〈
EY (P, s, 0), EY (P, t, 0)

〉
,
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see [32, Theorem 3.3.6]:

〈
EY (P, s, 0), EY (P, t, 0)

〉
=

1

s+ t
δab|Pa|[Γa : Γ′a]Y

s+t

+
1

s− t
|Pa|φab(t, 0)Y s−t − 1

s− t
|Pb|[Γa : Γ′a]

[Γb : Γ′b]
φab(s, 0)Y −s+t

−
h∑
i=1

|Pai |
[Γai : Γ′ai ]

1

s+ t
φaai(s, 0)φbai(t, 0)Y −s−t.

We know that EYa (P, s, 0) has a simple pole at s = 2, and by taking Y → ∞ as in [47,

Proposition 6.13], one obtains

Ress=2Ea(σbP, s, 0) =
|Pa|[Γa : Γ′a]

vol(Γ\H3)
. (3.19)

The conclusion follows from relating Lab(s, 0) to the 0-th Fourier coefficient of Ea(P, s, 0),

as it can be seen from (3.11) and (3.12).

Now, when µ 6= 0, then we know that Lab(s, 0, µ, 0) has at most one simple pole

at s = 2. Using the integral representation from Lemma 3.3.1, this residue would have

〈1, Eb,µ(P,w, 0)〉 as a factor, and by the remark above, this vanishes.

3.3.3 Bounds for modular symbols

In this section we prove upper bounds for modular symbols, in similar fashion to [51,

Proposition 3.3] or [77, Proposition 2.6].

Theorem 3.3.1. If γ =

∗ ∗
c ∗

 ∈ Tab, then
〈
σaγσ

−1
b , α

〉
� | log |c||+ 1.

Proof. We define the antiderivative of α:

Fa(P ) =

∫ P

a
α . (3.20)

Since α is cuspidal, it follows that it is rapidly decreasing at cusps, and hence F is well-

defined on H3 ∪ {cusps}. We note that

Fa(P ) =

∫ P

a
α =

∫ σ−1
a P

j∞
σ∗aα.

We note that F ′a := Fa ◦σa is invariant under the translations in Λa. Since α is rapidly

decreasing at the cusp a, it follows that Fa(P ) is bounded for y(σ−1
a P ) > Y0 with Y0 chosen
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as in (2.31).

Writing σ∗aα = fa,1dx1 + fa,2dx2 + fa,3dy, we conclude that

Fa(P ) =

∫ σ−1
a P

j∞
fa,1dx1 + fa,2dx2 + fa,3dy

=

∫ y(σ−1
a P )

∞
fa,3(z, y)dy (for some z ∈ Pa)

=

∫ Y0

∞
fa,3(z, y)dy +

∫ y(σ−1
a P )

Y0

fa,3(z, y)dy

� 1 + | log y(σ−1
a P )|.

The contributions from dx1 and dx2 drop since we are integrating along the y-axis, and

the last inequality follows from the fact that fa,3(z, y) � 1/y, see (3.6). We deduce that

for δ ∈ Γ,

〈δ, α〉 = Fa(δP )− Fa(P )

� | log
(
y(σ−1

a δP )
)
|+ | log

(
y(σ−1

a P )
)
|+ 1 .

Pick γ =

a b

c d

 ∈ σ−1
a Γσb and P = σb(0, 0, 1). Then the equation above implies

that 〈
σaγσ

−1
b , α

〉
� | log

(
|c|2 + |d|2

)
|+ 1 .

The lower left element c is constant in a double coset in σ−1
a Γ′aσa\σ−1

a Γσb/σ
−1
b Γ′bσb

and clearly |c| ≥ cab. Hence we can choose a representative

a b

c d

 in this double coset

such that |d| � |c| and we conclude that

〈
σaγσ

−1
b , α

〉
� | log |c||+ 1 .
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3.4 Perturbation theory of objects twisted by modular sym-

bols

In this section we study the dependency on ε of the space L2(Γ\H3, χε). Recall that

χε(γ) = exp(2πiε 〈γ, α〉), so by studying the analytic properties and perturbation theory in

ε of L2(Γ\H3, χε), we obtain information about the value distribution of modular symbols.

If we denote by λ0(ε) the first eigenvalue of−∆ on L2(Γ\H3, χε), we will see that, for ε small

enough, λ0(ε) is analytic in ε and we obtain the first few terms in the Taylor expansion

around ε = 0. We also study the behaviour of the residue of Lab(s, ε) at s0(ε), where

s0(ε)(2− s0(ε)) = λ0(ε).

3.4.1 Spectral theory of the space L2(Γ\H3, χε)

Denote by L2(Γ\H3, χε) the space of square integrable functions on Γ\H3 with respect to

the hyperbolic metric, satisfying

f(γP ) = χε(γ)f(P ) .

For f, g ∈ L2(Γ\H3, χε), we note that fg is Γ-invariant. Hence we define the inner product

〈f, g〉 :=

∫
Γ\H3

fg dv .

We let D(ε) ⊂ L2(Γ\H3, χε) be the subspace consisting of all C2-functions such that

∆f ∈ L2(Γ\H3, χε). For f, g ∈ C1(H), as in [32, p. 136], we define

Gr(f, g) := y2(fx1gx1 + fx2gx2 + fygy) = [df, dg] , (3.21)

where we have used the notation introduced in (3.5). Then for all f, g ∈ D(ε), Gr(f, g) is

Γ-invariant. Moreover, the following theorem holds, see [32, Theorem 4.1.7].

Theorem 3.4.1. For all f, g ∈ D(ε),

∫
Γ\H3

(−∆f)gdv =

∫
Γ\H3

Gr(f, g)dv .

In particular, −∆ : D(ε) → L2(Γ\H, χε) is a symmetric and positive operator. We

denote by L̃(ε) the closure of ∆ acting on D(ε).

The theory developed in [32, Chapter 5] for L2(Γ\H3) can be straightforwardly gen-
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eralised to L2(Γ\H3, χε). The operator L̃(ε) is nonnegative, its spectrum consists of a

discrete part and a continuous part. Let

0 ≤ λ0(ε) ≤ λ1(ε) ≤ · · ·λn(ε) < 1

be the eigenvalues in the interval [0, 1) counted with their multiplicities.

The first eigenvalue is zero if and only if ε = 0, in which case it is simple and the

eigenspace is generated by the constant function. We write λn(ε) = sn(ε)(2−sn(ε)), where

we choose 1 ≤ sn(ε) ≤ 2 for 0 ≤ λn(ε) ≤ 1.

Recall that since α is cuspidal, there exists some compactly supported 1-form α̃ such

that

〈γ, α̃〉 = 〈γ, α〉 for all γ ∈ Γ .

With this in mind, we define

Ua(P, ε) := exp

(
2πiε

∫ P

a
α̃

)
(3.22)

and consider the unitary operators

Ua(ε) : L2(Γ\H3)→ L2(Γ\H3, χε),

f 7→ Ua(·, ε)f .

We also define

L(ε) := Ua(ε)
−1L̃(ε)Ua(ε) . (3.23)

This implies that L(ε) = ∆ outside the support of α̃. This will be crucial later in the

thesis, particularly in the proof of Lemma 3.4.3.

This construction ensures that the operator L(ε) acts on the fixed space L2(Γ\H3)

and that L(ε) and L̃(ε) are unitary equivalent. This implies that Spec(L(ε)) = Spec(L̃(ε)).

Write α̃ = f1dx1 + f2dx2 + f3dy. Using the fact that

∂Ua(P, ε)

∂x1
= 2πiεf1(P )Ua(P, ε)

and the other two similar corresponding derivatives with respect to x2 and y, we observe
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that

L(ε)h =Ua(P, ε)
−1

(
y2

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂y2

)
− y ∂

∂y

)
(Ua(P, ε)h)

=∆h+ 4πiεy2

(
f1
∂h

∂x1
+ f2

∂h

∂x2
+ f3

∂h

∂y

)
+ 2πiεy2

(
∂f1

∂x1
+
∂f2

∂x2
+
∂f3

∂y

)
h

− 4π2ε2y2(f2
1 + f2

2 + f2
3 )h− 2πiεyf3h.

We conclude that

L(ε)h = ∆h+ εL(1)h+ ε2L(2)h, (3.24)

where

L(1)h = 2πi

(
y2

(
∂f1

∂x1
+
∂f2

∂x2
+
∂f3

∂y

)
− yf3

)
+ 4πi[dh, α] ,

L(2)h = −4π2ε2[α, α]h .

In particular we note that L(ε) is independent of the choice of the cusp a and as a function

of ε is a polynomial of degree two.

From now on, we fix Y0 in (2.31) large enough such that α̃ vanishes on cuspidal sectors

Fa(Y0), for all cusps a. Fix Y > Y0. We choose h ∈ C∞(R+) such that h(y) = 0 for y ≤ Y

and h(y) = 1 for y ≥ Y + 1. Then for s ∈ C and P ∈ F we define

ha(P, s) :=


h(y(σ−1

a P ))y(σ−1
a P )s if P ∈ Fa(Y0),

0 if P ∈ F \ Fa(Y0).

We extend ha(·, s) to a Γ-invariant C∞-function defined for s ∈ C and P ∈ H3.

We also define

Ωε = {s ∈ C | Re(s) > 1, s(2− s) 6∈ Spec(−L(ε))} . (3.25)

We have the following Lemma, similar to [32, Lemma 6.1.4], [80, Lemma 2.1] or [79,

Lemma 3.1]:

Lemma 3.4.1. For s ∈ Ωε, there exists a unique Da(P, s, ε) such that

(L(ε) + s(2− s))Da(P, s, ε) = 0, Da(P, s, ε)− ha(P, s) ∈ L2(Γ\H3) . (3.26)
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Moreover, Da(P, s, ε) is holomorphic in s ∈ Ωε and real analytic in ε.

Proof. If such a solution exists, we write

ga(P, s, ε) = Da(P, s, ε)− ha(P, s) ∈ L2(Γ\H3) .

We apply (L(ε) + s(2− s)) to deduce

(L(ε) + s(2− s))ga(P, s, ε) = Ha(P, s, ε) , (3.27)

where

Ha(P, s, ε) = −(L(ε) + s(2− s))ha(P, s) . (3.28)

We note that Ha is a Γ-invariant C∞-function in the variable P , which is moreover of

compact support when restricted to F . It also depends holomorphically on s ∈ Ωε. More-

over, since L(ε) is equal to ∆ outside the support of α̃, we observe that Ha is independent

from ε, so that we can write it as Ha(P, s).

We can now use (3.28) as a definition for Ha(P, s), and for s ∈ Ωε, we can apply the

resolvent operator defined as

R(s, ε) = (L(ε) + s(2− s))−1

to obtain a unique function

ga(P, s, ε) = R(s, ε)Ha(P, s) ∈ L2(Γ\H3) .

Since there exist only finitely many values of s ∈ C with Re(s) > 1 for which s(2 − s)

is an eigenvalue of −∆ = −L(0) and we know that L(ε) is a polynomial in ε given by

(3.24), we can use the arguments in [52, p. 66–67] to conclude that the resolvent R(s, ε)

is holomorphic for s ∈ Ωε and depends real analytically on ε.

Remark 3.4.1. For Re(s) > 2, the equation (3.26) agrees with

Da(P, s, ε) = Ua(ε)
−1Ea(P, s, ε) .

Therefore, the conclusions of Lemma 3.4.1 hold for the Eisenstein series in the region
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s ∈ Ωε.

3.4.2 Behavior of λ0(ε) and the residue of Lab(s, ε) at s0(ε)

We know that λ0(0) = 0 is a simple eigenvalue for L(0) = ∆. It is possible to apply Kato’s

perturbation theory for finite dimensional spaces [52, p. 68–70] for our operator L(ε) of

the form (3.24), as explained in [83, Section 4]. We conclude that for ε in a small interval

around 0, λ0(ε) is real analytic in ε and also λ0(ε) is a simple eigenvalue.

We let u0(P, ε) ∈ L2(Γ\H3, χε) be the normalised corresponding eigenfunction of

−L̃(ε), i.e.

− L̃(ε)u0(P, ε) = λ0(ε)u0(P, ε) and

∫
Γ\H3

|u0(P, ε)|2dv = 1 . (3.29)

We want to study the behaviour of λ0(ε) around ε = 0. We adapt the proof of [82, Lemma

2.1].

Lemma 3.4.2. We have that λ′0(0) = 0 and

λ′′0(0) =
8π2

vol(Γ\H3)
‖α‖22 .

Proof. We apply Theorem 3.4.1 with f(P ) = g(P ) = u0(P, ε) to obtain

λ0(ε) =

∫
Γ\H3

Gr(u0(·, ε), u0(·, ε))dv =

∫
Γ\H3

y2

(∣∣∣∣∂u0

∂x1

∣∣∣∣2 +

∣∣∣∣∂u0

∂x2

∣∣∣∣2 +

∣∣∣∣∂u0

∂y

∣∣∣∣2
)
dx1dx2dy

y3
.

(3.30)

In particular, we note that λ0(ε) ≥ 0 and λ0(ε) = 0 if and only if the u0(P, ε) is constant

iff ε = 0.

We differentiate (3.30) with respect to ε, yielding

λ′0(ε) = 2

∫
Γ\H3

Gr

(
∂u0

∂ε
, u0(·, ε)

)
dv . (3.31)

Setting ε = 0 we deduce that λ′0(0) = 0 since u0(P, 0) is a constant function. Differentiating

once again,

λ′′0(ε) = 2

∫
Γ\H3

(
Gr

(
∂2u0

∂ε2
, u0(·, ε)

)
+ Gr

(
∂u0

∂ε
,
∂u0

∂ε

))
dv . (3.32)
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We define

w(P ) :=
∂u0

∂ε

∣∣∣∣
ε=0

.

Hence (3.32) and (3.7) give us

λ′′0(0) = 2

∫
Γ\H3

Gr(w,w)dv = 2‖dw‖22. (3.33)

since the mixed term vanished because u0(·, 0) is constant.

Since u0(P, ε) ∈ L2(Γ\H3, χε), we know that u0(γP, ε) = χε(γ)u0(P, ε). Differentiat-

ing this equation with respect to ε and then setting ε = 0, we obtain that for all γ ∈ Γ,

w(γP ) = w(P ) +
2πi 〈γ, α〉√
vol(Γ\H3)

, (3.34)

where we have used the fact that u0(P, 0) = 1/
√

vol(Γ\H3). Moreover, since we know

that λ0(0) = λ′0(0) = 0, we know from (3.29) that

∆w = 0 . (3.35)

If we define β = dw − 2πivol(Γ\H3)−1/2α, then β is a harmonic, Γ-invariant 1-form

such that for all P ∈ H3 and γ ∈ Γ

∫ γP

P
β = 0 . (3.36)

In other words, this means that 〈γ, β〉 = 0, for all γ ∈ Γ, and since we have a perfect

pairing and β is a harmonic differential, this implies β = 0. The result then follows from

(3.33).

Remark 3.4.2. From the proof above, we can deduce that w is of the form

w(P ) =
2πi√

vol(Γ\H3)

∫ P

Q
α+ CQ for some Q ∈ H∗,

where CQ is a constant.

Corollary 3.4.1. Let

Cα =
4‖α‖22

vol(Γ\H3)
.
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Then

s0(ε) = 2− π2Cαε
2 +O(ε3) .

Proof. It follows immediately from Lemma 3.4.2 and the fact that λ0(ε) = s0(ε)(2−s0(ε)).

Lemma 3.4.3. We have that

Ress=s0(ε) Lab(s, ε) =
|Pa||Pb|[Γa : Γ′a]

πvol(Γ\H3)
+ ε

2i|Pa||Pb|[Γa : Γ′a]

vol(Γ\H3)

∫ b

a
α+O(ε2) .

Proof. From the Fourier expansion (3.11) of the Eisenstein series, we deduce

∫
Pb

Ea(σbP, s, ε)dx1dx2 = δab|Pb|[Γa : Γ′a]y
s +

π

s− 1
Lab(s, ε)y

2−s.

We look at the residue at s = s0(ε) on both sides of the equality to obtain

πy2−s0(ε)

s0(ε)− 1
Ress=s0(ε) Lab(s, ε) = Ress=s0(ε)

∫
Pb

Ea(σbP, s, ε)dx1dx2

=

∫
Pb

ua(σbP, ε)dx1dx2 ,

where

ua(P, ε) := Ress=s0(ε)Ea(P, s, ε) .

Since s0(ε) = 2 +O(ε2), it follows that

∂
(
Ress=s0(ε) Lab(s, ε)

)
∂ε

∣∣∣∣∣
ε=0

=
1

π

∫
Pb

va(σbP )dx1dx2 ,

where

va(P ) :=
∂ua(P, ε)

∂ε

∣∣∣∣
ε=0

.

We define

wa(P, ε) = Ua(P, ε)
−1ua(P, ε). (3.37)

Then wa(P, ε) ∈ L2(Γ\H3) and it is an eigenfunction of L(ε) with eigenvalue λ0(ε). Dif-

ferentiating (3.37) with respect to ε and then setting ε = 0, we get

va(P ) = 2πi wa(P, 0)

∫ P

a
α̃+

∂wa(P, ε)

∂ε

∣∣∣∣
ε=0

.
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We note that when P is in the cuspidal sector Fa(Y0), the right-hand side of the

equality above is zero, since α̃ is compactly supported, and L(ε) = ∆ in this region, hence

wa(·, ε) is constant in this region.

Now, as in (3.19), we know that ua(P, 0) = |Pa|[Γa:Γ′a]
vol(Γ\H3)

, so by using the results in Lemma

3.4.2 and Remark 3.4.2, we deduce that

va(P ) =
2πi|Pa|[Γa : Γ′a]

vol(Γ\H3)

∫ P

a
α .

Since α is a cuspidal one-form, from definition we know that

∫
Pb

(∫ σbP

b
α

)
dx1dx2 =

∫
Pb

(∫ P

j∞
σ∗bα

)
dx1dx2 = 0 ,

hence

∂
(
Ress=s0(ε) Lab(s, ε)

)
∂ε

∣∣∣∣∣
ε=0

=
2i|Pa|[Γa : Γ′a]

vol(Γ\H3)

∫
Pb

∫ σbP

a
α =

2i|Pa||Pb|[Γa : Γ′a]

vol(Γ\H3)

∫ b

a
α .

3.5 Moment generating function

In this section we study the exponential sum

∑
γ∈Tab(X)

χε(σaγσ
−1
b ) =

∑
γ∈Tab(X)

exp
(
2πiε

〈
σaγσ

−1
b , α

〉)
= [Γb : Γ′b]

∑
r∈Rab(X)

exp(2πiε〈r〉ab),
(3.38)

which is the moment generating function for the distribution of modular symbols. Mo-

ments of modular symbols can be obtained by looking at the derivatives at ε = 0 of this

sum. We relate this sum to the generating series Lab(s, ε). We write the first few terms

in the Taylor expansion around ε = 0, thus obtaining expressions for the first and second

moments of the distribution of modular symbols. Additionally, we show that the values

in the set Rab(X) become equidistributed modulo the lattice Λa as X →∞.

Firstly, we need the following lemma about bounds on vertical lines for Lab(s, 0, µ, ε).

Lemma 3.5.1. Fix some δ > 0. If 1 + δ < Re(s) < 2 + δ and s(2− s) bounded away from



3.5. Moment generating function 78

spectrum of L(ε), then, uniformly in ε,

Lab(s, 0, µ, ε)�δ (1 + |µ|)2−Re(s)+δ|s| . (3.39)

Proof. For µ = 0, we use a similar argument of that in [94, p. 655] (which follows from the

Maaß–Selberg relations in H3 [32, p. 110]). We have that |φab(s, ε)| = O(1) in the region

Re(s) > 1 + η and away from the spectrum of L(ε). Now, the result follows from (3.12).

When µ 6= 0 and Re(s) > 1, we use Lemma 3.3.1. Choose w = 2 + 2δ + it, where

s = σ+ it. Then Stirling’s formula gives us that the contribution from the Gamma factors

is O(|s|).

Next, we want to study the contribution from the integral. We use Lemma 3.4.1 to

deduce that for Re(s) > 1 and s(2− s) bounded away from the spectrum of L(ε),

∫
F
|Ea(P, s, ε)Eb,µ(P,w, ε)|dv =

∫
F
|Da(P, s, ε)Eb,µ(P,w, ε)|dv

≤
∫
F
|ha(P, s)Eb,µ(P,w, ε)|dv +

∫
F
|(Da(P, s, ε)− ha(P, s))Eb,µ(P,w, ε)|dv .

The second integral is bounded by

‖g(σ−1
a P, s, ε)‖L2‖Eb,µ(P,w, ε)‖L2 � 1 .

It remains to study the first integral. It suffices to concentrate on the cuspidal sector

Fa(Y ) since ha(P, s) vanishes everywhere else. We get

∫
Fa(Y )

|ha(P, s)Eb,µ(P,w, ε)|dv =

∫ ∞
Y

∫
Pa

|ysEb,µ(σaP,w, ε)| dv .

Now, with our choice of w = 2+2δ+it, we see that Eb,µ(σaP,w, ε) decays exponentially

in the cusp, so the integral above is indeed bounded. This in turn implies that

∫
F
|Ea(P, s, ε)Eb,µ(P,w, ε)|dv � 1 ,

and hence we obtain the desired upper bound for Lab(0, µ, s, ε).

We obtain the following expression for the moment generating function by using a

similar method to [77, Section 4].
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Lemma 3.5.2. There exists an absolute constant ν > 0 depending on the spectral gap of

∆ such that, uniformly for ε small enough,

∑
γ∈Tab(X)

χε(σaγσ
−1
b ) =

X2s0(ε)

s0(ε)
Ress=s0(ε) Lab(s, ε)

(
1 +O(X−ν)

)
.

Proof. Let φU : R→ R be a family of smooth nonincreasing functions with

φU (t) =


1 if t ≤ 1− 1/U,

0 if t ≥ 1 + 1/U,

(3.40)

and φ
(j)
U (t) = O(U j) as U →∞. For Re(s) > 0, we consider the Mellin transform

RU (s) =

∫ ∞
0

φU (t)ts
dt

t
. (3.41)

We can easily see that

RU (s) =
1

s
+O

(
1

U

)
as U →∞ (3.42)

and for any c > 0

RU (s) = O

(
1

|s|

(
U

1 + |s|

)c)
as |s| → ∞ , (3.43)

where the last estimate follows from repeated partial integration. Now we use the Mellin

inversion to obtain

∑
γ∈Tab

χε(σaγσ
−1
b ) φU

(
|c|2

X2

)
=
∑
γ∈Tab

χε(σaγσ
−1
b )

1

2πi

∫
Re(s)=3

X2s

|c|2s
RU (s)ds

=
1

2πi

∫
Re(s)=3

Lab(s, ε)X
2sRU (s)ds .

Next, we recall Lemma 3.5.1 and equation (3.43) to deduce that the last integral is abso-

lutely convergent. We want to move the line of integration to Re(s) = h, where

h =
2 max(s1(0), 1) + 2

3
.

Then for ε small enough, s1(ε) < h < s0(ε). We integrate along a box of height T and

let T → ∞. Indeed, the polynomial growth on vertical lines of Lab(s, ε) guaranteed by



3.5. Moment generating function 80

Lemma 3.5.1, together with equation (3.43), give us

lim
T→∞

∫
Re(s)=3
|t|≥T

Lab(s, ε)X
2sRU (s)ds = lim

T→∞

∫
Re(s)=h
|t|≥T

Lab(s, ε)X
2sRU (s)ds = 0 ,

and

lim
T→∞

∫
h≤Re(s)<2

Im(s)=T

Lab(s, ε)X
2sRU (s)ds = lim

T→∞

∫
h≤Re(s)<2
Im(s)=−T

Lab(s, ε)X
2sRU (s)ds = 0 .

We conclude that

1

2πi

∫
Re(s)=3

Lab(s, ε)X
2sRU (s)ds =

1

2πi

∫
Re(s)=h

Lab(s, ε)X
2sRU (s)ds

+ Ress=s0(ε)

(
Lab(s, ε)X

2sRU (s)
)
.

Setting c = 3 in (3.43), we observe that

∫
Re(s)=h

Lab(s, ε)X
2sRU (s)ds� X2hU3 .

Now, (3.42) gives us

Ress=s0(ε)

(
Lab(s, ε)X

2sRU (s)
)

=
X2s0(ε)

s0(ε)

(
Ress=s0(ε) Lab(s, ε) +O

(
1

U

))
. (3.44)

Since we want this to be the main contribution, we choose U = Xa, where

a =
2−max(s1(0), 1)

4
.

With this choice, for ε small enough, we get

∑
γ∈Tab

χε(σaγσ
−1
b ) φU

(
|c|2

X2

)
=
X2s0(ε)

s0(ε)

(
Ress=s0(ε) Lab(s, ε) +O(X−a)

)
. (3.45)

Setting ε = 0, using Lemma 3.3.2, we obtain

∑
γ∈Tab

φU

(
|c|2

X2

)
= X4

(
|Pa||Pb|[Γa : Γ′a]

2πvol(Γ\H3)
+O(X−a)

)
.

We now choose φ1
U and φ2

U as in (3.40) with the further requirements that φ1
U (t) = 0
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for t ≥ 1 and φ2
U (t) = 1 for 0 ≤ t ≤ 1. Then

∑
γ∈Tab

φ1
U

(
|c|2

X2

)
≤

∑
γ∈Tab(X)

1 ≤
∑
γ∈Tab

φ2
U

(
|c|2

X2

)
,

so the previous two equations give us

#Tab(X) = X4

(
|Pa||Pb|[Γa : Γ′a]

2πvol(Γ\H3)
+O(X−a)

)
. (3.46)

Also, from the definition of φU ,

∑
γ∈Tab

χε(σaγσ
−1
b ) φU

(
|c|2

X2

)
=

∑
γ∈Tab(X)

χε(σaγσ
−1
b ) +O

(
#

{
γ ∈ Tab : 1− 1

U
≤ |c|

2

X2
≤ 1 +

1

U

})
.

(3.47)

But now we use (3.46) to bound the size of the error term

#

{
γ ∈ Tab : 1− 1

U
≤ |c|

2

X2
≤ 1 +

1

U

}
= Tab

(
X

√
1 +

1

U

)
− Tab

(
X

√
1− 1

U

)
= O

(
X4−a/2

)
.

The conclusion follows from (3.45) and (3.47).

Let

F (ε) = Ress=s0(ε) Lab(s, ε)

and we write its Taylor expansion around ε = 0 as F (ε) =
∑

k≥0Ckε
k. So far we have

shown that

C0 =
|Pa||Pb|[Γa : Γ′a]

πvol(Γ\H3)
and C1 =

2i|Pa||Pb|[Γa : Γ′a]

vol(Γ\H3)

∫ b

a
α .

We note that the coefficients Ck were essentially computed by Petridis–Risager in [79],

allowing them to obtain all moments for modular symbols.

Corollary 3.5.1. If ε ≥ X−ν/4, for some ν > 0 depending on the spectral gap, then

1

#Tab(X)

∑
γ∈Tab(X)

χε(σaγσ
−1
b ) = 1+ε

(
2πi

∫ a

b
α

)
+ε2

(
−2π2 logXCα +Dα,ab

)
+O(X−ν) ,
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where

Dα,ab = 2π2Cα +
C2

C0
. (3.48)

Remark 3.5.1. From the formula above we observe that computing the variance shift Dα,ab

is equivalent to finding the second term in Laurent series expansion of ∂2

∂ε2
Lab(s, ε)

∣∣∣
ε=0

,

or in other words finding the first two terms in the Laurent expansion of the Goldfeld

Eisenstein series E2
a (P, s). For the case of H2 this is done in [79] and their methods could

be extended to work in H3 as well.

As a consequence of our work so far, we can show that Rab(X) is equidistributed in

the fundamental domain Pa as X →∞.

Proposition 3.5.1. There exists ν > 0 depending on the spectral gap for ∆, such that for

all µ ∈ Λ∗a,

∑
r∈Rab(X)

e(〈µ, r〉) = δ0(µ)
|Pa||Pb|[Γa : Γ′a]

2πvol(Γ\H3)[Γb : Γ′b]
X4 +O

(
(1 + |µ|)X4−ν) .

In particular, for any continuous function h : C/Λa → C,∑
r∈Rab(X) h(r)

#Rab(X)
→
∫
C/Λa

h(z)dz as X →∞ .

Proof. From Lemma 2.6.1, the generating series for the exponential sum is

∑
r∈Rab(X)

e(〈µ, r〉)
|c|2s

=
1

[Γb : Γ′b]

∑
γ∈Tab

e (〈µ, γ∞〉)
|c|2s

=
1

[Γb : Γ′b]
Lab(s, µ, 0, 0) .

By inverting γ in the series above, we note that Lab(s, µ, 0, , 0) = Lba(s, 0,−µ, 0). We

use a contour integration argument similar to the one in the proof of Lemma 3.5.2. The

polynomial growth of Lba(s, 0,−µ, 0) on vertical lines is guaranteed by Lemma 3.5.1, whilst

by Lemma 3.3.2 we know that Lba(s, 0, µ, 0) has a pole at s = 2 if and only if µ = 0. Finally,

from (3.46) we know that

#Rab(X) = X4

(
|Pa||Pb|[Γa : Γ′a]

2πvol(Γ\H3)[Γb : Γ′b]
+O(X−ν)

)
.

The second claim follows from the generalised Weyl equidistribution criterion.
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3.6 Normal distribution of modular symbols

We now have all the ingredients to prove that modular symbols have asymptotically a

normal distribution. We make use of the Berry–Esseen inequality and of our results about

the behaviour of s0(ε) and Lab(s, ε).

We recall the Berry–Esseen inequality, see [105, Theorem II.7.16].

Theorem 3.6.1. If X is a real valued random variable and T > 0, then

sup
z∈R

∣∣∣∣∫ z

−∞
e−t

2/2dt− P(X < z)

∣∣∣∣� 1

T
+

∫ T

−T

∣∣∣∣∣e−t
2/2 − E(exp(itX))

t

∣∣∣∣∣ dt . (3.49)

For γ ∈ Tab(X), we define the random variable

Aγ =

√
1

Cα logX

〈
σaγσ

−1
b , α

〉
(3.50)

where γ is chosen uniformly at random from Tab(X).

We fix t := 2πε
√
Cα logX. Then, by definition,

E(exp(itAγ)) =
1

#Tab(X)

∑
γ∈Tab(X)

χε(σaγσ
−1
b ) .

Fix some δ > 0. We choose T = (logX)1/2−δ and apply Theorem 3.6.1 for the

random variables Aγ . We split the integral on the right-hand side of (3.49) into three

ranges, depending on the size of t. All the implied constants are uniform in ε (and hence

in t).

1. Small |t|. Suppose |t| ≤ X−δ, for some small δ. Using exp(iθ) = 1 + O(θ) and the

bounds for
〈
σaγσ

−1
b , α

〉
provided by Theorem 3.3.1, we obtain

E(exp(itAγ)) = 1 +O

 t

#Tab(X)
√

logX

∑
γ∈Tab(X)

|
〈
σaγσ

−1
b , α

〉
|


= 1 +O

(
t
√

logX
)
.

Also, when |t| ≤ X−δ, we see that

e−t
2/2 = 1− t2

2
+O(t4) = 1 +O

(
tX−δ

)
.
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Therefore

∫
|t|≤X−δ

∣∣∣∣∣e−t
2/2 − E(exp(itAγ))

t

∣∣∣∣∣ dt�
∫
|t|≤X−δ

√
logX dt� X−δ/2 .

2. Medium |t|. Suppose X−δ ≤ |t| ≤ (logX)δ, where δ > 0. Using that

s0(ε) = 2− π2Cαε
2 +O(ε3),

we see that

E(exp(itAγ)) =
2X2s0(ε)−4

s0(ε)
(1 +O(ε))

= exp
(
logX(−2π2Cαε

2 +O(ε3)
)

(1 +O(ε))

= e−t
2/2(1 +O(ε3 logX) +O(ε))

= e−t
2/2 +O

(
e−t

2/2|t|3√
logX

+
e−t

2/2

(logX)1/2−δ

)
.

Hence the contribution from such t is

∫
X−δ<|t|<(logX)δ

∣∣∣∣∣e−t
2/2 − E(exp(itAγ))

t

∣∣∣∣∣ dt
�
∫
X−δ<|t|<(logX)δ

(
e−t

2/2t2

(logX)1/2
+

e−t
2/2

|t|(logX)1/2−δ

)
dt

�(logX)−1/2+δ .

3. Large |t|. Suppose (logX)δ ≤ |t| ≤ (logX)1/2−δ. Similarly as in the previous case,

E(exp(itAγ))� e−t
2/2+O(|t|3(logX)−1/2) � e−t

2/4 � e−(logX)δ/2 .

Therefore, the contribution from large |t| is bounded by

∫
(logX)δ≤|t|≤(logX)1/2−δ

e−(logX)δ/2

|t|
dt� (logX)−1/2 .

Putting everything together, we conclude the result in Theorem 3.1.2(a). Parts (b)

and (c) of Theorem 3.1.2, where the results about the first and second moments are stated,
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follow easily from Corollary 3.5.1.

Remark 3.6.1. The method exposed in this chapter can be generalised to cohomology

classes H1
cusp(Γ,R), where Γ < SO(n + 1, 1) cofinite with cusps. Therefore we can prove

the following theorem. We refer to Section 2.7 or Chapter 4 for detailed description of the

notation.

Theorem 3.6.2. Let ω be in the free part of H1
Γ′∞

(Γ,R). Then the random variable

γ 7→ ω(γ) defined on the sample space TΓ(X) is asymptotically normally distributed. More

precisely, there exists a constant Cω such that, or every a, b ∈ [−∞,∞] with a ≤ b, we

have

#
{
γ ∈ TΓ(X) , ω(γ)√

Cω logX
∈ [a, b]

}
#TΓ(X)

→ 1√
2π

∫ b

a
exp

(
− t

2

2

)
dt, as X →∞.

3.7 Results for imaginary quadratic fields

So far, we have described our results for the general case of a Kleinian group Γ. In this

section we apply our results to Bianchi groups and their congruence subgroups. Let K

a quadratic number field with discriminant dK . The arithmetic properties the groups

PSL2(OK) and their congruence subgroups, as well as the geometry of the corresponding

quotient spaces, are thoroughly described in [32, Chapter 7], while the theory of Eisenstein

series for Γ = PSL2(OK) is developed in [32, Chapter 8].

The ring of integers OK has the Z-basis consisting of 1 and ω, where

ω =
dK +

√
dK

2
.

We denote by PK a fundamental domain for this lattice.

The zeta function ζK(s) of K is for Re(s) > 1 defined by

ζK(s) =
∑
a

1

N(a)s
,

where the sum is over the non-zero ideals of OK and the norm of a is N(a) = |OK/a|.

As mentioned in the introduction, Cremona has several results about modular symbols

associated to quadratic imaginary number fields. He uses them to compute spaces of

modular forms and to establish an arithmetic correspondence between elliptic curves and
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cusp forms, see [22], [23], [21]. For consistency reasons, we will use the notation used in

his work.

For technical reasons, we assume the K has class number one. This is not a vital

restriction, but it allows us to obtain nice arithmetic descriptions of the cusps and easier

formulae relating modular symbols to L-functions. Let n be a nonzero ideal in the ring of

integers OK . We work with the congruence subgroup

Γ0(n) :=


a b

c d

 ∈ PSL2(OK) : c ∈ n

 .

A basis for the left-invariant differential 1-forms on H3 is chosen to be

β =

(
−dz
y
,
dy

y
,
dz

y

)
. (3.51)

Let F : H3 → C3 be a vector-valued function which we can write as F = (F0, F1, F2), then

we define the differential 1-form

F · β :=
1

y
(−F0dz + F1dy + F2dz) . (3.52)

Definition 3.7.1. Let F : H3 → C3 be a vector-valued function and γ ∈ GL2(C). Then

we define a new function (F |γ) : H3 → C3 by

(F |γ)(P ) := F (γP )j(γ;P ) ,

where

j(γ;P ) =
1

|r|2 + |s|2


r2 −2rs s2

rs |r|2 − |s|2 −rs

s2 2rs r2


with r = cz + d and s = cy.

This definition ensures that the differential F · β is invariant under γ if and only if

F |γ = F .

Definition 3.7.2. A cusp form of weight 2 for Γ0(n) is a vector-valued function F : H3 →

C3 such that

1. F · β is a harmonic 1-form;
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2. F |γ = F , for all γ ∈ Γ0(n);

3. For all γ ∈ PSL2(OK) and y ≥ 0,

∫
PK

(F |γ)(z, y)dz = 0 .

We denote the space of cusp forms of weight 2 for Γ0(n) by S(n). We note that

F ∈ S(n) if and only if F · β is a cuspidal 1-form for X0(n) := Γ0(n)\H∗, where H∗ =

H3 ∪K ∪ {∞}. In fact, the map

S(n)→ H1
cusp(X0(n),C)

F 7→ F · β

is an isomorphism.

For F ∈ S(n), we have the Fourier expansion

F = (F0, F1, F2) =
∑

0 6=α∈OK

c(α)y2K

(
4π|α|y√
|dK |

)
ψ

(
αz√
dK

)
(3.53)

where ψ(z) = e(z + z) and

K(y) =

(
− i

2
K1(y),K0(y),

i

2
K1(y)

)

for y > 0 and K0, K1 the K-Bessel functions.

The theory of cusp forms and associated L-functions, Hecke operators, newforms etc.

is similar to the classical Atkin–Lehner theory over Q. We briefly recall the elements we

need for our exposition.

For primes π in OK which do not divide the level n, the Hecke operator Tπ sends

the cusp form with Fourier coefficients c(α) to one with coefficients c′(α), where c′(α) =

N(π)(απ)+c(α/π), where c(α) = 0 if α 6∈ OK . As in the classical case, a newform in S(n)

is an eigenform for all Hecke operators Tπ, for π not dividing n, which is not induced by

a form in S(m), for any level m properly dividing n.

Secondly, let e a divisor of n and e is a generator for e. Then the Atkin–Lehner

operator We on S(n) is given by the action of any matrix of the form

 ae b

cN de

 which
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has determinant e. Then this operator is an involution and it commutes with the action

of all Hecke operators.

Let ε be a unit in O∗K and Iε denote the matrix

ε 0

0 1

. The action of Iε on H3

sends (z, y) to (εz, y) and if F ∈ S(n) has Fourier coefficients c(α), then F |Iε has Fourier

coefficients c(εα). Since

ε2 0

0 1

 and

ε 0

0 ε−1

 give birth to the same action, but the

latter belongs to Γ0(n), we must have that c(α) = c(ε2α), for all units ε ∈ O∗K . Hence

if ε is a generator for the unit group O∗K , then Iε induces an involution of S(n) which

commutes with the Hecke operators, hence we can split S(n) into two eigenspaces

S(n) = S+(n)⊕ S−(n) .

Newfroms in S+(n) are called plusforms, and their Fourier coefficients satisfy c(α) = c(εα),

for all α ∈ O∗K . Hence they depend only on the ideal (α). So if F ∈ S+(n), we attach to

F the L-function

L(F, s) =
∑
a

c(a)

N(a)s
.

Since the Fourier coefficients c(a) are multiplicative, we obtain the Euler product

L(F, s) =
∏
p

(1− c(p)N(p)−s + χ(p)N(p)1−2s)−1, where χ(p) =


0 if p | n ,

1 if p - n .

Similar to classical case, one can deduce the Ramanujan bound |c(p)| ≤ 2N(p)1/2,

from which it follows that L(F, s) converges for Re(s) > 3/2.

We now consider additive twists of this L-function. Fix r = a/c ∈ K. If F is a

plusform, then we define L(F, s, r) as

L(F, s, r) :=
∑

06=α∈OK

c(α)

N(α)s
ψ

(
αr√
dK

)
=
∑
(α)

c((α))

N((α))s
ψ̃

(
αr√
dK

)

where the second sum is over all ideals (α) and

ψ̃(z) :=
1

|O∗K |
∑
ε∈O∗K

ψ(εz)
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is invariant over generators of an ideal.

We form the Mellin transform of F by multiplying by y2s−2 and integrating along a

vertical imaginary axis. For s ∈ C and r ∈ K, we define

Λ(F, s, r) :=

∫ j∞

r
y2s−2F · β =

∫ ∞
0

y2s−2F1(r, y)
dy

y
.

The rapid decay of F (z, y) in the cusps ensures that Λ(F, s, r) is an entire function of

s ∈ C.

We note that if F is a plusform, then we can write modular symbols as central values

of twisted L-function:

〈r〉 = Λ(F, 1, r) =

∫ ∞
r

F · β . (3.54)

We obtain analytic continuation and functional equation for L(F, s, r).

Lemma 3.7.1. Let F be a plusform in S(n), where n is a square-free ideal in OK . Then

(a) For Re(s) > 3/2, we have

Λ(F, s, r) =
1

4

(
|c|
√
|dK |

2π

)2s

Γ(s)2 L(F, s, r) .

(b) Write n = ef, where f = n + (c). Let e = (e). Denote by we the eigenvalue of the

Fricke involution We acting on F . Then we have the following functional equation:

Λ(F, s, a/c) = −weN(e)1−sΛ

(
F, 2− s,−ea

c

)
,

where ea is the inverse of ea in (OK/(c))∗.

(c) With the same notation, we have 〈a/c〉 = −wε〈−ea/c〉.

We now quote [21, p. 415] and note that if F is a plusform in S2(n), then the image

of the map

IF : Γ0(n)→ C , IF (γ) =

∫ γA

A
F · β

is a discrete, nontrivial subgroup of R, hence of the form Ω(F )Z, for some real Ω(F ).

In [21], Cremona provides an algorithm for computing Ω(F ). We show that for a fixed
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newform F , the values in the image of the map IF are normally distributed with the

required normalisation and ordering.

We have the following description of equivalent Γ0(n)-equivalent points in K, as in [22,

Proposition 4.2.2] or [23, Lemma 2.2.7]:

Proposition 3.7.1. Let p1

q1
, p2

q2
∈ K be written in their lowest terms. The following are

equivalent:

1. There exists γ ∈ Γ0(n) such that γ
(
p1

q1

)
= p2

q2
;

2. There exists u ∈ O∗K such that s1q2 ≡ u2s2q1(mod (q1q2) + n), where pksk ≡

1(mod (qk)), for k = 1, 2.

Hence we can provide the following description for the inequivalent cusps for Γ0(n),

where n is square-free. For each ideal d|n, we fix some d ∈ OK such that (d) = d. Then a

complete set of inequivalent cusps are given by ad = 1/d with d|n. If d = n, then 1/d is

equivalent to the cusp at infinity. Moreover,

R∞d =
{a
c

mod PK : a ∈ (OK/(c))∗, (c) + n = d
}
.

and

〈r〉∞d =

∫ r

1/d
F · β =

∫ j∞

1/d
F · β + 〈r〉.

Also, for all cusps d, we have that [Γd : Γ′d] = |O∗K |/2. In particular, |O∗Q(i)| = 4,

|O∗Q(
√
−3)
| = 6 and |O∗K | = 2 for all other quadratic imaginary number fields.

We note that we now have all the ingredients to derive Corollary 3.1.1 from Theorem

3.1.2. Indeed, from [32, Theorem 6.1.1] we see that the covolume of PSL2(OK) is

vol(PSL2(OK)) =
|dK |2

4π2
ζK(2)

and similarly as in the 2-dimensional case, we can deduce

[PSL2(OK) : Γ0(n)] =
∏
p|n

(1 + |p|) .

Finally, the Petersson norm of F is given by

‖F‖2 = 〈F · β, F · β〉 =

∫
Γ\H3

(2|F1|2 + |F2|2 + 2|F3|2)dv .
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Putting all together, we deduce that the constant CF in Corollary 3.1.1 is given by

CF =
4π2‖F‖2

|dK |2ζK(2)
∏

p|n(1 + |p|)
. (3.55)

This completes the proofs of Theorem 3.1.2 and Corollary 3.1.1.



Chapter 4

Residual equidistribution of modular

symbols and generalisations to higher

dimensions

This chapter is mainly based on [19], joint work with Asbjørn Nordentoft.

4.1 Introduction

In this chapter we develop a number of new results regarding the distribution of modular

symbols modulo primes and generalisations to higher dimensional hyperbolic spaces.

1. Firstly, we obtain joint equidistribution for the mod p values of modular symbols (ap-

propriately normalised) associated to a Hecke basis of weight 2 cusp forms restricted

to cusps which lie in a fixed interval of R/Z.

2. We calculate the variance of the distribution and show a surprising bias for large p.

3. We show some particular cases of the full conjecture using connections with Eisen-

stein congruences.

4. As an application of our method, we obtain a residual equidistribution result for

Dedekind sums.

5. Lastly, we extend the equidistribution results to classes in the cohomology of general

finite volume quotients of higher dimensional hyperbolic spaces.

We note that in the case of higher dimensional hyperbolic spaces there is interesting torsion

in the cohomology. The breakthrough of Scholze [93] established that such torsion classes

have associated Galois representations. This was actually our original motivation for
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studying the higher dimensional cases, where we can consider torsion classes. Furthermore,

Bergeron and Venkatesh [4] have conjectured that, at least in the three dimensional case,

there is an abundance of torsion in the relevant cohomology group. In this chapter we are

able to shed light on the distribution properties of these cohomology classes. In Section

4.6 we will survey what is known about the dimensions of the cohomology groups, which

our results apply to.

4.1.1 Results for modular symbols

Let us state the result in the simplest case for the two dimensional hyperbolic space in an

arithmetic setup. We define the modular symbol map associated to a weight 2 and level

N cusp form f ∈ S2(Γ0(N)) as the map

Q 3 r 7→ 〈r, f〉 := 2πi

∫ i∞

r
f(z)dz, (4.1)

where the contour integral is taken along a vertical line. One way to think about this map

is as the Poincaré pairing on Γ0(N)\H2 between the 1-form 2πif(z)dz and the homology

class of paths containing the geodesic from r to i∞. Now assume that f is a Hecke-

normalised newform. Then by [66, Sec. 1], there exist periods Ωf,+ and Ωf,− such that

for all a/q ∈ Q with q ≡ 0 mod N , we have m±f (a/q) ∈ Z with full image, where

m±f (a/q) :=
1

Ωf,±
(〈a/q, f〉 ± 〈−a/q, f〉) . (4.2)

Given a basis of Hecke newforms f1, . . . , fd and a prime p, we can consider the map

r 7→ mN,p(r) := (m+
f1

(r),m−f1
(r), . . . ,m−fd(r), r) ∈ (Z/pZ)2d × (R/Z)

as a random variable defined on the outcome space

ΩQ,N := {a/q | 0 < a < q ≤ Q, (a, q) = 1, N |q} (4.3)

endowed with the uniform probability measure. Then we have the following equidistribu-

tion result.

Theorem 4.1.1. The random variables mN,p defined on the outcome spaces ΩQ,N converge

in distribution to the uniform distribution on (Z/pZ)2d×(R/Z) as Q→∞. More precisely,
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for any fixed a ∈ (Z/pZ)2d and any interval I ⊂ R/Z, we have

#
{
a/q ∈ ΩQ,N ∩ I | (m+

f1
(a/q), . . . ,m−fd(a/q)) ≡ a mod p

}
#ΩQ,N

=
|I|
p2d

+ o(1)

as Q→∞.

Remark 4.1.2. Similarly, we can prove equidistribution modulo pn (see Theorem 4.1.8

below). This translates to the fact that the random variables (m+
f1
, . . . ,m−fd) considered

as maps ΩQ,N ∩ I → Qp are asymptotically distributed with respect to the (multivariate)

standard p-adic Gaußian (as defined in for instance [115]).

The next natural question is to ask how well the values equidistribute. We answer this

by studying the “variance” of the residual distribution modulo p of the random variables

m±f on the sample space ΩQ,N . Furthermore, we show an analogue of Chebyshev’s bias

for large p, in the sense that the modular symbols are “biased” towards the residue class

0 mod p.

Theorem 4.1.3. For large enough p, there exist constants cp, δp > 0 such that

∑
a∈Z/pZ

(
#{b/q ∈ ΩQ,N | m±f (b/q) ≡ a mod p}

#ΩQ,N
− 1

p

)2

∼ cpQ−δp

as Q→∞. Moreover, as p→∞, we have that cp = 2/p2 +O(p−2) and δp → 0.

Furthermore, for p large enough, we have for Q large enough (depending on p) that:

#{b/q ∈ ΩQ,N | m±f (b/q) ≡ a mod p} ≤ #{b/q ∈ ΩQ,N | m±f (b/q) ≡ 0 mod p}, (4.4)

with equality if and only if a ≡ 0 mod p.

Remark 4.1.4. We explicitly evaluate the constants cp and δp and moreover we obtain

asymptotics for the deviation from the mean for different residue classes when p is large,

see Section 4.5.3 for more details.

We can also show that some specific cases of the conjecture of Mazur and Rubin hold,

that is without taking an extra average. We state here the result in the simplest case and

refer to Section 4.3 for the more general case.
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Theorem 4.1.5. Let f ∈ S2(Γ0(11)) be the unique Hecke normalised cusp form of weight

2 and level 11. Then the values of m+
f on {aq | (a, q) = 1, 0 < a < q} equidistribute exactly

modulo 5 for all q ≡ 0 mod 11. That is, each residue class modulo 5 is covered exactly

φ(q)/5 times by the values m+
f (a/q).

As a consequence of the method developed to study the special case as in Theorem

4.1.5, we deduce a residual equidistribution result for classical Dedekind sums, given by

s(a, q) :=

q∑
k=1

((k/q))((ak/q))

with (()) the sawtooth function. Dedekind sums are important objects in number theory,

they appear for instance in the functional equation of the eta function η(z). We allow for

both an “algebraic” and “archimedian” restriction on (a, q). Our result supplements the

vast literature on the archimedean distributional properties of Dedekind sums, see [36], [10]

for surveys of results.

Corollary 4.1.6. Let N, p ≥ 5 be primes such that p|N−1 and H ≤ (Z/NZ)× the unique

subgroup of index p. Fix some class a0 ∈ (Z/NZ)× and some interval I ⊂ R/Z. Then the

values of

s(a,Nq)− s(a, q)− (N − 1)(a+ a)

12q

(where aa ≡ 1 mod Nq) on the outcome space

{
(a, q) | 0 < q ≤ Q, a ∈ (Z/NqZ)×, a ∈ a0H, a/q ∈ I

}
are all p-integral and equidistribute mod p as Q→∞.

We observe that the modular symbols map gives rise to a map Γ0(N)→ C by putting

〈γ, f〉 := 〈γ∞, f〉, where γ∞ = a/c with a, c the left upper and lower entries of γ ∈ Γ0(N).

By shifting the contour and doing a change of variable we see that

〈γ1γ2, f〉 = 〈γ1, f〉+ 2πi

∫ γ1γ2∞

γ1∞
f(z)dz = 〈γ1, f〉+ 〈γ2, f〉,

which shows that modular symbols define an additive character on Γ0(N) and thus an

element of (the cuspidal part of) the cohomology group H1(Γ0(N),C). Furthermore,

by the integrality conditions, we see that the normalised modular symbols m±f,p define
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elements of H1(Γ0(N),Z/pZ). This view point is useful for generalisations.

Remark 4.1.7. We note that in [57], the slightly larger outcome space {a/q | 0 < a < q ≤

Q, (a, q) = 1} is considered (following Mazur and Rubin), that is, without the condition

that N |q. In fact, equidistribution on this outcome space does not hold in the generality

above. One has to exclude some bad primes p (see Remark 4.3.3 below). Our methods

can also deal with this larger outcome space, by considering the Fourier expansion of

Eisenstein series at different cusps, as is done in [79] or [18]. The outcome space ΩQ,N

above is, however, very natural from the cohomological perspective and for simplicity we

will restrict to this case.

4.1.2 Distribution of cohomology classes

More generally, let SO(n+ 1, 1) be the special orthogonal group with signature (n+ 1, 1),

which we identity with the group of isometries of the (n + 1)-dimensional upper half

space Hn+1. Now, for a co-finite subgroup with cusps Γ < SO(n+ 1, 1), we will study the

distribution of unitary characters of Γ or, equivalently, cohomology classes in H1(Γ, S1)

(or H1(Γ,R/Z)). These cohomology groups have been studied in many contexts ( [89], [32,

Chap. 7]) and especially the case n = 2 is very appealing as it corresponds to Kleinian

groups due to the exceptional isomorphism SO(3, 1) ∼= SL2(C).

4.1.2.1 Results with arithmetic ordering

Let Γ ⊂ SO(n+1, 1) be as above and assume that the associated symmetric space Γ\Hn+1

has a cusp at ∞. Let Γ′∞ ⊂ Γ be the parabolic subgroup fixing the cusp at ∞. Note that

since Γ is discrete, there exists a lattice Λ < Rn such that Γ′∞ is exactly the group of

motions corresponding to translations by Λ. We will study the distribution of unitary

characters trivial on Γ′∞ or, equivalently, elements of the cohomology group H1
Γ′∞

(Γ,R/Z)

(the group cohomology classes trivial on Γ′∞, see Section 4.6.2 for detailed definitions).

Our distribution results are with respect to a natural arithmetic ordering on

Γ′∞\Γ/Γ′∞ which generalises the ordering in the definition of ΩQ,N above. To define

this, we use the Vahlen model SVn−1 for the group of isometries of Hn+1 consisting of

2 × 2 matrices over a specific Clifford algebra, introduced in [1] (see Section 2.7.2 below

for a detailed construction). This model provides a natural generalisation to n > 2 of

the familiar models SV0 = SL2(R) and SV1 = SL2(C). We define the following outcome

space:

TΓ(X) =
{
γ ∈ Γ′∞\Γ/Γ′∞ | 0 < |cγ | < X

}
, (4.5)
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where γ =
(
aγ bγ
cγ dγ

)
∈ SVn−1 in the Vahlen group model and |·| denotes the norm on the

relevant Clifford algebra. This generalizes the outcome space (4.3) above and the ones

considered for n = 1 in [79], [74] and for n = 2 in [18].

Now let ω1, . . . , ωd be elements of H1
Γ′∞

(Γ,R/Z) in general position, meaning that for

any (n1, . . . , nd) ∈ Zd, we have

n1ω1 + . . .+ ndωd = 0 ∈ H1
Γ′∞

(Γ,R/Z)⇔
(
niωi = 0 ∈ H1

Γ′∞
(Γ,R/Z),∀i = 1, . . . , d

)
.

As an example one can pick ω1, . . . , ωd to be a Fp-basis for H1
Γ′∞

(Γ,Z/pZ). We notice

that the image of any ω ∈ H1(Γ,R/Z) is either dense in R/Z or finite (recall that ω

defines an additive character Γ → R/Z). In the first case we put Jω = R/Z and in

the latter case we put Jω = Z/mZ, where m is the cardinality of the image of ω. We

equip R/Z and Z/mZ with the obvious choices of probability measures, Lebesgue and

uniform respectively. Finally associated to γ ∈ Γ′∞\Γ/Γ′∞, we define the invariant γ∞ ∈

(Rn ∪{∞})/Λ using the action of SO(n+ 1, 1) on the boundary of Hn+1, see Section 2.7.3

for more details. Then we have the following distribution result.

Theorem 4.1.8. Let ω1, . . . , ωd ∈ H1
Γ′∞

(Γ,R/Z) be in general position. The random vari-

ables γ 7→ (ω1(γ), . . . , ωd(γ), γ∞) defined on the sample spaces TΓ(X) are asymptotically

uniformly distributed on
∏d
i=1 Jωi × (Rn/Λ) as X → ∞. More precisely, for any fixed

(continuity) subsets Ai ⊂ Jωi and B ⊂ Rn/Λ, we have

#
{
γ ∈ TΓ(X) | (ω1(γ), . . . , ωd(γ)) ∈

∏d
i=1Ai, γ∞ ∈ B

}
#TΓ(X)

=

d∏
i=1

|Ai|
|Jωi |

· |B|
vol(Rn/Λ)

+ o(1)

as X →∞.

Remark 4.1.9. The Vahlen model has been used before to study automorphic forms on

Hn+1, for example by Elstrodt, Grunewald, and Mennicke [31] to prove a generalisation

of the Selberg Conjecture regarding the first non-zero eigenvalue of the Laplacian and by

Södergren [100] for proving equidistribution of horospheres on Hn+1.

Remark 4.1.10. Notice that the number of choices of cohomology classes in H1
Γ′∞

(Γ,R/Z)

in general position is infinite unless Γ/〈[Γ,Γ],Γ′∞〉 is torsion. See Section 4.6 for a survey

of results on the size of H1
Γ′∞

(Γ,R/Z).
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4.1.2.2 Results when ordered by length of geodesics

We can also obtain equidistribution of the cohomology classes if we order by the length

of the associated geodesics. We denote by Conjhyp(Γ) the set of conjugacy classes in

Γ which do not correspond to the identity, parabolic or elliptic elements. Then, for each

{γ} ∈ Conjhyp(Γ), there is a unique corresponding closed geodesic on Γ\Hn+1 whose length

we denote by l(γ).

Theorem 4.1.11. Let ω = (ω1, . . . , ωd) be defined from a set of cohomology classes in

general position as above. The random variables ω defined on conjugacy classes ordered

by the length of the geodesics are asymptotically equidistributed on
∏d
i=1 Ji. This means

in concrete terms that for any fixed (continuity) subsets Ai ⊂ Ji, we have

#{{γ} ∈ Conjhyp(Γ) | l(γ) ≤ X, (ω1(γ), . . . , ωd(γ)) ∈
∏d
i=1Ai}

#{{γ} ∈ Conjhyp(Γ) | l(γ) ≤ X}
=

d∏
i=1

|Ai|
|Ji|

+ o(1)

as X →∞.

Remark 4.1.12. In the case of Theorem 4.1.11, we can remove the assumption that Γ has

cusps. In fact the proof becomes more complicated in the presence of cusps.

4.2 Idea of proof

We will sketch the proof of Theorem 4.1.1 in the simplest case, which is the one dealt with

in [57], where we consider only one cusp form for H2 and no restrictions on the location

of r = a/q in R/Z. Our method is automorphic in nature and relies on the theory of

Eisenstein series. It can be seen as a discrete version of the method introduced by Petridis

and Risager in [77] for studying the distribution of modular symbols. They consider the

perturbation of the family of characters χε as ε → 0, whereas we consider the discrete

family χm for m ∈ Z.

Let f ∈ S2(Γ0(N)) be a Hecke eigenform of weight 2 and level N and let m±f :

Γ0(N)→ Z be the associated normalised modular symbols defined above. Recall that this

defines a non-trivial additive character Γ0(N)→ Z. We would like to show that the values

of m±f on the set ΩQ,N = {a/q | 0 < a < q ≤ Q, (a, q) = 1, N |q} equidistribute mod p as

Q→∞.

To do this we introduce for any l ∈ (Z/pZ)× the unitary character χl : Γ0(N)→ C×
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defined by

χl(γ) := e2πim±f (γ)l/p, γ ∈ Γ0(N).

By Weyl’s Criterion [48, page 487] in order to conclude equidistribution, it suffices to

detect cancelation in the Weyl sums; that is to prove for all l ∈ (Z/pZ)× that

∑
a/q∈ΩQ,N

χl(a/q) = o(Q2),

as Q→∞, where χl(a/q) := χl (γ) with γ ∈ Γ0(N) such that γ∞ = a/q.

Now, the key observation is that the generating series for these Weyl sums appears

very naturally as the constant term of an appropriate Eisenstein series. The cancelation

in the Weyl sums is now a simple analytic consequence of the analytic properties of the

corresponding Eisenstein series. To be precise; associated to χl we have the following

twisted Eisenstein series:

E(z, s, χl) =
∑

γ∈Γ∞\Γ0(N)

χl(γ) Im(γz)s,

where Γ∞ =

〈1 1

0 1

〉. This Eisenstein series defines a holomorphic function for Re s >

1 and by the work of Selberg [94, Chap. 39] admits meromorphic continuation to the entire

complex plane with a pole at s = 1 if and only if χl is trivial. Note that in general the

character χl might not come from an adelic one, but Selberg’s theory applies equally well.

Now a standard calculation using Poisson summation shows that the constant term

of the Fourier expansion of E(z, s, χl) is given by

ys +
π1/2y1−sΓ(s− 1/2)

Γ(s)
Ll(s),

with

Ll(s) :=
∑

c>0,N |c

 ∑
0<d<c,(c,d)=1

χl

a b

c d

 c−2s,

where

a b

c d

 is any matrix in Γ0(N) with lower entries c, d. We observe that Ll(s) is

exactly the generating series for the Weyl sums above, as promised.
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Now from the meromorphic continuation of the Eisenstein series itself, we also get

meromorphic continuation of the generating series Ll(s), and since χl is non-trivial we

conclude that Ll(s) is analytic for Re s > 1 − δ for some δ > 0. Thus we get the wanted

cancelation in Weyl sums using the standard machinery from complex analysis if we can

get bounds on vertical lines of Ll(s). It turns of that such bounds follow from the general

bound for scattering matrices also due to Selberg, and thus we are done.

This shows how to deduce equidistribution of modular symbols using Eisenstein series.

The proof for classes in the first cohomology of quotients of higher dimensional hyperbolic

spaces uses the same idea, although some parts of the argument require some more tech-

nical work. In order to obtain equidistribution results when restricting the cusps to a

specific interval I ⊂ R/Z, we will have to use all the Fourier coefficients of the Eisenstein

series as is done in [79].

4.3 Some special cases of the conjecture of Mazur and Ru-

bin

In this section we will consider certain special cases of the conjectures of Mazur and Rubin

(and the generalization to H3), which we can resolve without taking an extra average.

These special cases correspond to the fact that Hecke characters define unitary characters

of congruence subgroups, which in turn are connected to Eisenstein congruences as studied

intensively by Mazur in [63, Section 9] and [64].

First of all we will define the relevant cohomology classes and introduce the Hecke

operators in this context. Recall that for a discrete, cofinite subgroup Γ ⊂ SL2(k) with

k = R or C and an element α ∈ Γ̃ of the commensurator of Γ, we have a decomposition

ΓαΓ =
d⊔
i=1

Γαi

for some α1, . . . , αd ∈ Γ̃. Using this we define the Hecke operator Tα acting on the coho-

mology group H1(Γ, X) with X a trivial Γ-module as:

(Tαω)(γ) :=

d∑
i=1

ω(γi), (4.6)

where αiγ = γiασ(i) with γi ∈ Γ and σ some permutation of {1, . . . d}.
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We will consider the case of congruence subgroups

Γ0(f) = {γ ∈ SL2(OK) | γ ≡ ( ∗ ∗0 ∗ ) mod f},

where K is equal to Q or an imaginary quadratic extension thereof and f is a non-trivial

ideal of OK . In this case we have Γ̃0(f) = GL2(K) and the parabolic subgroup fixing ∞

is Γ′∞ =
(±1 OK

0 ±1

)
. We say that a Hecke operator is good if it is of the form Tα, where

α = ( a 0
0 1 ) with gcd(f, (a)) = 1.

Proposition 4.3.1. Let m be an odd integer diving | (OK/f)× |. Then there exists a class

ω ∈ H1
Γ′∞

(Γ0(f),Z/mZ), which is an eigenvector for all good Hecke operators and such that

for all a ∈ Z/mZ and c0 ∈ f, it satisfies

#{γ ∈ Γ∞\Γ0(f)/Γ∞ | cγ = c0, ω(γ) = a}
#{γ ∈ Γ∞\Γ0(f)/Γ∞ | cγ = c0}

=
1

m
, (4.7)

where cγ denotes the lower left entry of γ.

Proof. Let χ : (OK/f)× → C× be a unitary Hecke character of order m. Then we define

a character of Γ0(f) by (
a b
c d

)
7→ χ(d). (4.8)

This character is clearly trivial on Γ′∞ since the order m of χ is odd, and thus (4.8) defines

an element ωχ ∈ H1
Γ′∞

(Γ0(f),Z/mZ). For Tα a good Hecke operator, it is easy to check

that αi (with notation as in (4.6)) can all be chosen of the form ( ∗ ∗0 ∗ ) with determinant

equal to the determinant of α (thus the diagonal entries are coprime to f). Combining this

with γi = αiγα
−1
σ(i), one easily sees that

(Tα(ωχ)) (γ) = dωχ(γ),

where d = |Γ0(f)\Γ0(f)αΓ0(f)|. This shows that ωχ is an Hecke eigenclass with eigenvalue

d, as wanted.

Finally, recall the basic fact that a set of representatives of Γ∞\Γ0(f)/Γ∞ is given by


∗ ∗
c d

 | c ∈ f, d ∈ (OK/(c))×
 .
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From this, the equidistribution statement (4.7) follows directly.

It is a natural question to ask how the cohomology classes constructed above are

related to the modular symbols defined in (4.2). To tackle this we need to understand

so-called Eisenstein congruences, which have been studied intensively by Mazur [63]. We

will now introduce some required terminology and refer to [63] for a detailed account: We

say that a pair of primes (N, p) with N, p ≥ 5 and p|N − 1 is admissible if the local ring

TP has rank 1 over Zp where T is the Hecke algebra of level N and P ⊂ T is the Eisenstein

prime corresponding to p. In classical terms (N, p) being admissible means that there is

a unique cuspidal Hecke eigenform of level N which is congruent to the Eisenstein series

of weight 2 (i.e. f ∈ S2(Γ0(N)) s.t. the Hecke eigenvalues satisfy λf (l) ≡ l + 1 mod p for

primes l 6= N and Uf = −f where U is the Hecke operators at N). By a computation of

Merel [68], (N, p) is admissible exactly if

p−1∏
k=1

((k(N − 1)/p)!)k (4.9)

is a p-power in (Z/NZ)×. Note that all pairs of primes (N, p) with N < 250 are admis-

sible unless N = 31, 103, 127, 131, 181, 199, 211 (see the remark on [63, p. 141]). In the

admissible case we have the following strengthening of Proposition 4.3.1 (see [63, Chapter

II, Proposition 18.8] for a very related result).

Theorem 4.3.2. For an admissible pair of primes (N, p) with N, p ≥ 5 and p|N−1, there

exists a Hecke eigenform f ∈ S2(Γ0(N)) of weight 2 and level N such that the values of

m+
f (defined as in (4.2)) on {aq | (a, q) = 1, 0 < a < q} equidistribute exactly modulo p for

q ≡ 0 mod p.

Proof. Let χ be a Dirichlet character mod N of order p|N − 1. Then by Proposition 4.3.1

we have an associated cohomology class ωχ ∈ H1
Γ∞

(Γ0(N),Z/pZ) which equidistributes as

above and such that Tlωχ = (l+ 1)ωχ for all primes l 6= N , where Tl is the Hecke operator

corresponding to the matrix
(
l 0
0 1

)
. Furthermore, ωχ satisfies Uωχ = −ωχ, where U is

the Hecke operator at the bad prime N given by conjugation by
(

0 1
N 0

)
. Also ωχ is trivial

on the stabilizer 〈
(±1 0

1 ±1

)
〉 of the cusp 0 (using that the order of χ is odd) and thus ωχ

defines a parabolic cohomology class.

As there is no p-torsion in Γ0(N) (since p > 3), H1
P (Γ0(N),Z/pZ) is a 2g-dimensional

vector space over Fp with g = dimC(S2(Γ0(N))), which carries an action of the Hecke
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algebra. An element which is annihilated by T` − ` − 1 for all primes ` 6= N and by

U + 1 corresponds exactly to a cusp form congruent to the weight 2 Eisensten series. By

the assumption that (N, p) is admissible we know that there exists a unique such Hecke

eigenform f ∈ S2(Γ0(N)). We conclude that ωχ is a linear combination of m±f .

Finally, we recall that H1
P (Γ0(N),Z/pZ) can be diagonalized by the involution ι given

by conjugation with
(−1 0

0 1

)
(here we need p > 2), which follows from e.g. [65, Sec. 1]. We

see directly that the eigenvalue of ωχ under the action of ι is +1. Thus we conclude that

m+
f = m · ωχ for some m ∈ (Z/pZ)×. This gives the wanted result.

This settles the conjecture of Mazur and Rubin in these very special cases, whereas

in general the conjecture seems out of reach without the extra average both with the

automorphic and the dynamical approach.

Remark 4.3.3. Strictly speaking the conjecture of Mazur and Rubin [65] is only formu-

lated for primes p and cusp forms corresponding to elliptic curves E where the residual

representation of E mod p is surjective and p is an ordinary and good prime of E. This

is not the case in the example considered above, but the above seems like the natural

generalization of the conjecture to this case.

Remark 4.3.4. The assumption that N is prime is essential for the results of [63] to apply.

For composite level (and for imaginary quadratic fields) the situation becomes much more

complicated as multiplicity one might fail (see e.g. [109]).

4.4 Twisted Eisenstein series for Hn+1

Let Γ < SVn−1, Γ′∞ and Λ be as described in Section 2.7. We now fix χ a unitary character

of Γ which is trivial on Γ′∞. From this we define the twisted Eisenstein series

E(P, s, χ) =
∑

Γ′∞\Γ

χ(γ)y(γP )s. (4.10)

It is absolutely convergent for Re(s) > n and satisfies

E(γP, s, χ) = χ(γ)E(P, s, χ),

∆E(P, s, χ) = s(n− s)E(P, s, χ).

We see that E(P, s, χ) is invariant under the action by the lattice Λ and hence it has a

Fourier expansion. It is well-known that the constant term in the Fourier expansion has
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the form ys+φ(s, χ)yn−s, where φ(s, χ) is called the scattering matrix. Its basic properties

are well-known, see [14, Ch. 6].

For µ, ν ∈ Λ∗ and c ∈ C(Γ), we define the generalised Kloosterman sum as in [31,

Section 4] using the Vahlen model:

S(µ, ν, c, χ) :=
∑(

a b
c d

)
∈Γ′∞\Γ/Γ′∞

χ

a b

c d

 e
(〈
ac−1, µ

〉
+
〈
dc−1, ν

〉)
(4.11)

=
∑

γ∈Γ′∞\Γ/Γ′∞
cγ=c

χ(γ)e(〈γ∞, µ〉+
〈
(γ−1∞)∗, ν

〉
), (4.12)

where cγ is the lower-left entry of γ in the Vahlen model. We now calculate the Fourier

expansion of the Eisenstein series using the techniques developed in [32, p. 111–113]

and [31, p. 676–678]. We obtain

E(P, s, χ) =[Γ∞ : Γ′∞]ys + yn−s
πn/2Γ

(
s− n

2

)
vol(Λ)Γ(s)

L(s, χ)

+
2πsyn/2

vol(Λ)Γ(s)

∑
µ∈Λ∗\{0}

L(s, µ, χ)|µ|s−n/2Ks−n/2(2π|µ|y)e(〈x, µ〉), (4.13)

where

L(s, χ) :=
∑
γ∈TΓ

χ(γ)

|cγ |2s
=

∑
c∈C(Γ)

S(0, 0, c, χ)

|c|2s
, (4.14)

and for µ 6= 0,

L(s, χ, µ) :=
∑
γ∈TΓ

χ(γ)
e(
〈
dγc
−1
γ , µ

〉
)

|cγ |2s
=

∑
c∈C(Γ)

S(0, µ, c, χ)

|c|2s
. (4.15)

For χ = 1 the trivial character, we just denote L(s, µ) := L(s, µ, 1). We note that the

explicit Fourier expansion we obtain in (4.13) is closely related to [31, Thm. 9.1].

At other cusps a 6= ∞ of Γ, we will also need some information about the Fourier

expansion. For this let P a = (xa, ya) = σ−1
a P denote the coordinates at a. Then the

Fourier expansion at a is given by [14, Ch. 6, Prop. 1.42]:

E(P a, s, χ) = φa(s)(y
a)n−s +

∑
µ∈Λ∗a\{0}

φa(s, µ)(ya)n−sKs−n/2(2πn|µ|ya)e(〈xa, µ〉),
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where φa(s, µ) are the Fourier coefficients, which decay rapidly in |µ| (for s fixed). In

particular we observe that E(P, s, χ) is square integrable when restricted to Fa(Y ) for

a 6=∞ (for Y sufficiently large as in (2.40)).

Remark 4.4.1. By inverting γ in the definition of L(s, χ, µ), we observe that

L(s, χ, µ) =
∑
γ∈TΓ

χ(γ)
e(
〈
(γ−1∞)∗, µ

〉
)

|cγ |2s
=
∑
γ∈TΓ

χ(γ)
e(〈γ∞, µ〉)
|cγ |2s

. (4.16)

4.4.1 Short discussion on spectral properties

We say that a (measurable) function f : Hn+1 → C is χ-automorphic if it satisfies

f(γP ) = χ(γ)f(P ) ,

for P ∈ Hn+1 and γ ∈ Γ.

Denote by L2(Γ\Hn+1, χ) the space of square integrable χ-automorphic functions with

respect to the hyperbolic metric. For f, g ∈ L2(Γ\Hn+1, χ), we note that fg is Γ-invariant.

Hence we can define the inner product

〈f, g〉 :=

∫
F
fg dv .

We let D(χ) ⊂ L2(Γ\Hn+1, χ) be the subspace consisting of all C2-functions such that

∆f ∈ L2(Γ\Hn+1, χ). Then one can see that −∆ : D(χ)→ L2(Γ\Hn+1, χ) is a symmetric

and nonnegative operator, its spectrum consists of discrete and continuous parts with

finitely many discrete points in the interval [0, n2/4). Let

0 ≤ λ0(χ) ≤ λ1(χ) ≤ · · · ≤ λk(χ) < n2/4

be the eigenvalues in the interval [0, n2/4) (see [89] and [14, Ch. 6]). The Eisenstein series

E(z, s, χ) admits meromorphic continuation to s ∈ C and satisfies the functional equation

E(P, n− s, χ) = φ(n− s, χ)E(P, s, χ) ,

where φ(s, χ) is the scattering matrix. Moreover, E(P, s, χ) has poles where φ(s, χ) has

poles and viceversa. There are finitely many poles in the region Re(s) > n/2, all of them

simple and on the real line. If n/2 < σ0 ≤ n is a pole of E(P, s, χ), denote by uσ0 its
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residue at σ0. Then

uσ0 ∈ L2(Γ\Hn+1, χ) and ∆uσ0 + σ0(n− σ0)uσ0 = 0 .

For 0 ≤ j ≤ k, let sj(χ) ∈ (n/2, n] be such that sj(χ)(n− sj(χ)) = λj(χ). We denote by

Ω(χ) := {s0(χ), . . . , sk(χ)}.

Then the poles of E(P, s, χ) in Re s > n/2 form a subset of Ω(χ) (exactly the non-cuspidal

part of the discrete spectrum). Moreover, we can see from [14, Ch 6, p. 37] that for χ

trivial, we have

Ress=nE(P, s) =
[Γ∞ : Γ′∞]vol(Λ)

vol(Γ\Hn+1)
. (4.17)

4.4.2 Key lemmas

In this section we will prove certain key analytic lemmas that we will need in the proofs

of our theorems. First of all we will show that we can only have λ0(χ) = 0 when χ is

trivial. Secondly we obtain meromorphic continuation of the Fourier coefficients of the

twisted Eisenstein series, which will serve as generating series for our distribution problems.

Finally, we will prove a bound on vertical lines for these generating series.

The most conceptual way to see the first claim above is probably to use Green’s

identity ∫
F

(−∆u)udv =

∫
F
∇u.∇u dv +

∫
∂F
u(∇u.n)dS.

If we have ∆u = 0, then the first integral is 0. The third integral should vanish since

contributions from “opposing sides” in the boundary of the fundamental domain should

cancel each other. This would force the second integral to be 0, which means u is constant.

This argument works in principle, but for example in [32, Theorem 4.1.7] they spend several

pages making it rigorous in the three dimensional case. Instead we will give an argument

using the Fourier expansion and the mean value theorem for harmonic functions.

Lemma 4.4.1. We have that λ0(χ) = 0 if and only if χ is trivial.

Proof. Suppose λ0(χ) = 0 and let u be a corresponding eigenvector, i.e. u ∈ L2(Γ\Hn+1, χ)

and ∆u = 0. Then we can consider the Fourier expansion of u at a cusp a of Γ. We know
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from [14, Ch. 6, p.10] that the Fourier expansion of u takes the form

c1,a + c2,a(y
a)n +

∑
µ∈Λ∗a\{0}

au,a(µ)(ya)n/2Kn/2(2πn|µ|y)e(〈x, µ〉).

From the rapid decay of the K-Bessel function we see that if c2,a 6= 0, then u behaves like

(ya)n close enough to a and thus
∫
Fa(Y ) |u(x, y)|2dxdy is divergent contradicting the fact

that u is square integrable. Thus c2,a = 0 and we conclude again using the rapid decay

of the K-Bessel functions that u is bounded on Fa(Y ). Since a was an arbitrary cusp

we conclude that u is bounded on all of F . Thus since χ is unitary, we conclude that u

is bounded on all of Hn+1. Now it follows from the Mean Value Theorem for Harmonic

Functions on Hn+1 that u is constant. By definition, u(γP ) = χ(γ)u(P ), for all γ ∈ Γ and

P ∈ Hn+1. Thus we conclude that χ is the trivial character.

Therefore, if χ is trivial the unique eigenfunction of eigenvalue 0 is the constant

one, and for χ non-trivial there are no eigenfunctions of eigenvalue 0. This finishes the

proof.

We now obtain meromorphic continuation of the Fourier coefficients of the Eisenstein

series and crucial information about the location of the poles.

Proposition 4.4.2. The Dirichlet series L(s, µ, χ) admits meromorphic continuation to

the entire complex plane. The possible poles in the half-plane Re s > n/2 are contained in

Ω(χ). Furthermore, there is a pole at s = n exactly if χ is trivial and µ = 0. In this case

the residue is equal to
[Γ∞ : Γ′∞]Γ(n)vol(Λ)2

πn/2Γ
(
n
2

)
vol(Γ\Hn+1)

.

Proof. From (4.13), we know that for µ ∈ Λ∗\{0}

L(s, µ, χ) =
Γ(s)

2πsyn/2|µ|s−n/2Ks−n/2(2π|µ|y)

∫
P
E((x, y), s, χ)e(−〈x, µ〉)dx,

and

L(s, χ) =
ys−nΓ(s)

πn/2Γ
(
s− n

2

) (∫
P
E((x, y), s, χ)dx− [Γ∞ : Γ′∞]ys

)
,

where P is a fundamental parallelogram for Λ. Now for y > 0 fixed , the Bessel function

Ks(y) defines an analytic function in s, which is non-zero for some y large enough. Simi-

larly the Gamma function defines a meromorphic function. Thus we get the meromorphic
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continuation of L(s, µ, χ) from that of the Eisenstein series. We also note that in the

half-plane Re s > n/2, L(s, µ, χ) has possible poles only where E(P, s, χ) has poles, i.e.

the poles are contained in Ω(χ). By Lemma 4.4.1, we see that L(s, µ, χ) is regular at s = n

unless χ is trivial.

If χ is trivial, we see that L(s, µ) with µ 6= 0 is regular at s = n, since the pole of the

Eisenstein series is constant. For µ = 0 the residue is given by

Ress=n L(s, 0) =
Γ(n)

πn/2Γ
(
n
2

) ∫
P

[Γ∞ : Γ′∞]vol(Λ)

vol(Γ\Hn+1)
dx =

[Γ∞ : Γ′∞]Γ(n)vol(Λ)2

πn/2Γ
(
n
2

)
vol(Γ\Hn+1)

,

as wanted.

In order to obtain bounds on vertical lines for our generating series, we will use ideas

due to Colin de Verdière [15], which employs the analytic properties of resolvent operators.

Alternatively, one could use Poincaré series for µ 6= 0 and Maaß–Selberg for µ = 0 as is

done in [79] and [18]. In the end the two methods are essentially equivalent.

Let h : R+ → R+ be a smooth function which is equal to [Γ∞ : Γ′∞] for y > Y + 1 and

0 for y < Y , where Y is as in (2.40). Then for Re(s) > n/2 we define a χ-automorphic

function on Hn+1 by P 7→ h(y)ys for P ∈ F and extended periodically (twisted accordingly

by χ). Then from the above mentioned results on the Fourier expansions of the Eisenstein

series at the different cusps, we see that

g(P, s, χ) := E(P, s, χ)− h(y)ys ∈ L2(Γ\Hn+1, χ),

which satisfies for z ∈ F

(∆− s(n− s))g(P, s, χ) = −(∆− s(n− s))h(y)ys = h′′(y)ys+2 + (2s− n+ 1)h′(y)ys+1.

We observe that the right hand side above is compactly supported with L2-norm bounded

by O(|s|+ 1) for n/2 + ε < Re s < n+ 2. Now we put

H(P, s, χ) := R(s, χ)(h′′(y)ys+2 + (2s− n+ 1)h′(y)ys+1) ∈ L2(Γ\Hn+1, χ),

where R(s, χ) = (∆ − s(n − s))−1 denotes the resolvent operator associated to ∆. By a

general bound for the operator norm of resolvent operators [47, Lemma A.4], we conclude
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that

||H(·, s, χ)||L2 �ε 1,

when s is bounded at least ε away from Ω(χ). We can now write

E(P, s, χ) = H(P, s, χ) + h(y)ys, P ∈ F (4.18)

where we have good control on the L2-norm of H(P, s, χ). We will use this to obtain

bounds on vertical lines for the Fourier coefficients of E(P, s, χ), mimicking [74, Section

4.4].

Proposition 4.4.3. Let µ ∈ Λ∗. Then we have

L(s, µ, χ)�ε,µ (|s|+ 1)n/2,

for n/2 + ε < Re s < n+ 2 and s bounded at least ε away from Ω(χ).

Proof. We have

L(s, µ, χ) =

∫
P
fs(y, µ)E((x, y), s, χ)e(−〈x, µ〉)dx− 1µ=0[Γ∞ : Γ′∞]ysfs(y, µ), (4.19)

where 1µ=0 is 1 if µ = 0 and 0 otherwise and

fs(y, µ) =


Γ(s)

(
2πsyn/2|µ|s−n/2Ks−n/2(2πn|µ|y)

)−1
, µ 6= 0,

Γ(s)
(
yn−sπn/2Γ(s− n/2)

)−1
, µ = 0.

The idea is now to bound the right hand side of (4.19) using (4.18). In order to bring the

information we have about H(P, s, χ) into play, we need to make an extra integration over

y. So let Y be a fixed quantity such that {(x, y) | x ∈ P, y > Y } ⊂ F , then we see that

∫ Y+1

Y

∫
P
fs(y, µ)E((x, y), s, χ)e(−〈µ, x〉)dxdy

=

∫ Y+1

Y

∫
P
fs(y, µ)H((x, y), s, χ)e(−〈µ, x〉)dxdy

+

∫ Y+1

Y

∫
P
fs(y, µ)h(y)yse(−〈µ, x〉)dxdy
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Now we observe that by Cauchy–Schwarz we have

∫ Y+1

Y

∫
P
fs(y, µ)H((x, y), s, χ)e(−〈µ, x〉)dxdy

≤
(∫ Y+1

Y

∫
P
|H((x, y), s, χ)|2dxdy

)1/2(∫ Y+1

Y

∫
P
|fs(y, µ)|2dxdy

)1/2

� ||H(·, s, χ)||L2

(∫ Y+1

Y
|fs(y, µ)|2dy

)1/2

,

where we use that {(x, y) | x ∈ P, y > Y } ⊂ F . To finish the proof we need an upper

bound for fs(y, µ).

For µ = 0 we get by Stirling’s approximation the upper bound

fs(y, 0)�ε y
n−σ(|s|+ 1)n/2,

for s = σ + it with n/2 + ε < σ < n+ 2.

For µ 6= 0, we use the Fourier expansion for the K-Bessel function (coming from

combining [47, (B.32)] and [47, (B.34)]) to obtain a good approximation. By applying

Stirling’s approximation, this gives for s = σ + it with t� 1

Ks−n/2(2π|µ|y) =
π1/2tσ−n/2−1/2eπt/2

(
t
e

)it
2
√

2 sin(π(s− n/2))
(π|µ|y)−s+n/2 (1 +Oµ,y(t

−1))

�µ,y e
−πt/2tσ−n/2−1/2,

where the implied constants depend continuously on y. From this we conclude that when

y ∈ (Y, Y + 1), we have

fs(y, µ)�µ (1 + |s|)n/2.

Inserting this and using the bound ||H(·, s, χ)||L2 �ε 1, we conclude that

L(s, µ, χ)�ε,µ (|s|+ 1)n/2,

for s bounded ε away from Ω(χ), as wanted.

Using this we deduce the following asymptotic expression using a standard complex

analysis argument. See [18, p. 20–21] or [74, Appendix A] for fully detailed proofs in

similar settings.
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Proposition 4.4.4. Let χ be a unitary character of Γ trivial on Γ′∞ and µ ∈ Λ∗. Then

there exists a constant ν(χ) > 0 such that

∑
γ∈TΓ(X)

χ(γ)e (〈γ∞, µ〉) =
X2s0(χ)

s0(χ)

(
Ress=s0(χ) L(s, χ, µ) +Oχ,µ(X−ν(χ))

)
.

Proof. Let φU : R→ R be a family of smooth non-increasing functions with

φU (t) =


1 if t ≤ 1− 1/U,

0 if t ≥ 1 + 1/U

(4.20)

and φ
(j)
U (t) = O(U j) as U →∞. For Re(s) > 0, we consider the Mellin transform

RU (s) =

∫ ∞
0

φU (t)ts
dt

t
. (4.21)

Now we use Mellin inversion and (4.16) to obtain

∑
γ∈TΓ

χ(γ)e (〈γ∞, µ〉) φU

(
|c|2

X

)
=

1

2πi

∫
Re(s)=n+1

L(s, χ, µ)XsRU (s)ds.

We move the line of integration to Re(s) = h(χ) for some h(χ) > n/2 such that s1(χ) <

h(χ) < s0(χ). We use the fact that we have polynomial growth on vertical lines for

L(s, χ, µ) guaranteed by Lemma 4.4.3 and that L(s, χ, µ) has only a possible pole at s0(χ)

in the region Re(s) > h(χ). We conclude that

∑
γ∈TΓ

χ(γ)e (〈γ∞, µ〉)φU
(
|c|2

X

)
=
Xs0(χ)

s0(χ)

(
Ress=s0(χ) L(s, χ, µ) +Oχ,µ,U (X−ν(χ))

)
,

for some ν(χ) > 0. Also, with the appropriate choice of U , one can show that

∑
γ∈TΓ

χ(γ)e (〈γ∞, µ〉)φU
(
|c|2

X

)
=

∑
γ∈TΓ(

√
X)

χ(γ)e (〈γ∞, µ〉) +Oχ,µ(Xn−a(χ)),

for some a(χ) > 0. The conclusion follows.

Remark 4.4.5. As a consequence of Proposition 4.4.4 and Proposition 4.4.2, we conclude
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that for all unitary characters χ as above, there exist ν(χ) > 0 such that

∑
γ∈TΓ(X)

χ(γ)e (〈γ∞, µ〉) = 1χ,µ
vol(Λ)2Γ(n)

nπn/2vol(Γ\Hn+1)Γ(n/2)
X2n +Oχ(X2n−ν(χ)),

where 1χ,µ is 1 if µ = 0 and χ is trivial and 0 otherwise. In particular, we conclude

#TΓ(X) ∼ vol(Λ)2Γ(n)

nπn/2vol(Γ\Hn+1)Γ(n/2)
X2n, (4.22)

as X →∞.

4.5 Proof of main results

In this section we will use the analytic properties of twisted Eisenstein series proved in

the previous section to prove our main results.

We recall the setup from the introduction. Consider the cohomology group

H1
Γ′∞

(Γ,R/Z) (see Appendix 4.6 for details), which can be identified with the set of unitary

characters of Γ trivial on Γ′∞.

Definition 4.5.1. We say that ω1, . . . , ωd ∈ H1
Γ′∞

(Γ,R/Z) are in general position if for

any (l1, . . . , ld) ∈ Zd, we have

n1ω1 + . . .+ ndωd = 0 ∈ H1
Γ′∞

(Γ,R/Z)⇔
(
niωi = 0 ∈ H1

Γ′∞
(Γ,R/Z),∀i = 1, . . . , d

)
.

As an example one can pick ω1, . . . , ωd to be a Fp-basis for H1
Γ′∞

(Γ,Z/pZ), where we

consider Z/pZ ⊂ R/Z via Z/pZ 3 a 7→ a/p.

The image of any ω ∈ H1(Γ,R/Z) is an additive subgroup of R/Z and thus is either

dense in R/Z or finite. In the first case we put Jω = R/Z and in the latter case we put

Jω = Z/mZ where m is the cardinality of the image of ω. That is, Jω is the closure of the

image of ω. We equip R/Z and Z/mZ with respectively the Lebesgue measure and the

uniform probability measure.

Proof of Theorem 4.1.8. Let ω1, . . . , ωd ∈ H1
Γ′∞

(Γ0(N),R/Z) be in general position. Then

for any tuple l = (l1, . . . , ld) ∈ Zd such that liωi 6= 0 ∈ H1
Γ′∞

(Γ0(N),R/Z) for all i =

1, . . . , d, we get a non-trivial element of H1
Γ′∞

(Γ,R/Z) defined by

ωl := l1ω1 + . . .+ ldωd.
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Now we consider the associated non-trivial unitary character χl : Γ→ C× given by

χl(γ) := e
(
ωl(γ)

)
,

where e(x) = e2πix. Observe that this is indeed well-defined and that we get an induced

map χl : Γ′∞\Γ/Γ′∞ → C× since ωl is trivial on Γ′∞.

By Weyl’s Criterion [48, p. 487] in order to conclude equidistribution of the values

of

ω(γ) := (ω1(γ), . . . , ωd(γ), γ∞)

inside
∏d
i=1 Jωi × (Rn/Λ), we have to show cancelation in the corresponding Weyl sums:

∑
γ∈TΓ(X)

χl(γ)e(〈γ∞, µ〉),

where l ∈ Zd and µ ∈ Λ∗. We see that it follows from combining Proposition 4.4.4 and

Remark 4.4.1 that we have

∑
γ∈TΓ(X)

χl(γ)e(〈γ∞, µ〉) = o

 ∑
γ∈TΓ(X)

1

 ,

as X → ∞ unless µ = 0 and χl is trivial. This finishes the proof of Theorem 4.1.8 using

Weyl’s Criterion.

4.5.1 Distribution of modular symbol mod p and mod 1

Now let us see how Theorem 4.1.1 follows from Theorem 4.1.8.

Proof of Theorem 4.1.1. We restrict to n = 1 and Γ = Γ0(N). We see that m±f with f ∈

S2(Γ0(N))new give a basis for H1
P (Γ0(N),Z/pZ). Thus it follows that they are in general

position and thus we conclude Theorem 4.1.1 after noting that TΓ0(N)(Q) = ΩQ,N .

A different application is to consider the distribution of un-normalized modular sym-

bols mod 1. So let f1, . . . , fd ∈ S2(Γ0(N)) be a basis of Hecke-normalized new forms and

consider the map Q→ (R/Z)2d+1 given by

Q 3 r 7→ mN,R/Z(r) = (Re〈r, f1〉, Im〈r, f1〉, . . . , Im〈r, fd〉, r), (4.23)

as a random variable defined on ΩQ,N defined as in (4.3).
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Corollary 4.5.2. The random variables mN,R/Z defined on the outcome spaces ΩQ,N con-

verge in distribution to the uniform distribution on (R/Z)2d+1 as Q→∞. More preciely,

for any fixed product of intervals
∏2d+1
n=1 In ⊂ (R/Z)2d+1, we have

#
{
a/q ∈ ΩQ,N ∩ I2d+1 | (Re〈a/q, f1〉, . . . , Im〈a/q, fd〉) ∈

∏2d
n=1 In

}
#ΩQ,N

=
2d+1∏
n=1

|In|+ o(1)

as Q→∞.

Proof. From a classical result of Schneider [92] we know that the periods (or elliptic

integrals) Ωf,± appearing in (4.2) are transcendental. By the rationality of (4.2), this

implies that the cohomology class associated to a newform f given by

Γ0(N) 3 γ 7→
∫ ∞
γ∞

Re(f(z)dz)

takes some irrational value (and similarly for Im(f(z)dz)). Thus by the Eichler–Shimura

isomorphism, we conclude that given a basis f1, . . . , fd of Hecke-normalized newforms, the

associated cohomology classes Re fi(z)dz and Im fi(z)dz are in general position and the

images of the associated characters are dense in R/Z.

Now Corollary 4.5.2 follows directly from Theorem 4.1.8.

4.5.2 Proof of Corollary 4.1.6.

Now we see how our results can be applied to the residual distribution of Dedekind sums

s(a, q) =
∑q

k=1((k/q))((ak/q)) where

((x)) =


x− bxc − 1/2, x /∈ Z

0, x ∈ Z

is the “sawtooth” function.

Proof of Corollary 4.1.6. The results of [64, Section 5] shows (after some simple manipu-

lations) that for N, p as in Corollary 4.1.6,

Γ0(N) 3
(
a b
Nq d

)
7→ s(a,Nq)− s(a, q)− (N − 1)(a+ d)

12q

defines a non-trivial element ωN,p ∈ H1
Γ∞

(Γ0(N),Z/pZ) with eigenvalue −1 under the
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involution given by conjugation by
(

0 1
N 0

)
. Now let ωχ ∈ H1

Γ∞
(Γ0(N),Z/pZ) be the co-

homology class associated to a Dirichlet character χ mod N of order p as in the proof of

Theorem 4.3.1, which we recall has eigenvalue +1 under the conjugation action by
(

0 1
N 0

)
.

We observe that ωχ(γ) = a′0 ∈ Z/pZ corresponds exactly to γ having upper left entry in

some fixed coset a0H of the unique index p subgroup H of (Z/NZ)×. Now Corollary 4.1.6

follows directly by applying Theorem 4.1.1 to ωN,p and ωχ.

4.5.3 On the variance of the residual distribution

A natural question to ask next is how well the values equidistribute in Theorem 4.1.8. For

simplicity, we will restrict to H2. So let Γ = Γ0(N), f ∈ S2(Γ0(N)) be Hecke newform and

consider the normalized modular symbols m±f as above. In what follows we will suppress

m±f from the notation.

We consider for each X > 0 the random variable Yp,X defined on the outcome space

Z/pZ (with uniform probability measure) by

Z/pZ 3 a 7→
#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}

#TΓ(X)
.

Clearly, we have E(Yp,X) = 1
p and Theorem 4.1.1 says that as X → ∞, the random

variable Yp,X converge in distribution to the Dirac measure at 1
p . We will now calculate

the variance, which is a natural measure for the regularity of our distribution problem:

Var(Yp,X) = E((Yp,X − EYp,X)2) =
1

p

∑
a∈Z/pZ

(
Yp,X(a)− 1

p

)2

.

First of all we observe that for the modular symbols and primes appearing in Theorem

4.3.1, we have Var(Yp,X) = 0 for all X. On the other hand we can prove using the

perturbation theory of the hyperbolic Laplacian, that as p grows, the picture is very

different.

Theorem 4.5.3. For p large enough, we have

Var(Yp,X) = cpX
4sp−4 +Op(X

4sp−4−δp), (4.24)

for some sp, cp, δp > 0, as X → ∞. As p → ∞, we have cp = 2/p2 + O(p−3) and

sp = 1− cfp−2 +O(p−3), where cf is given by (4.29).
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Furthermore, we can calculate the deviation from the mean for each individual residue

class. For p large enough and a ∈ Z/pZ, we have:

#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}
#TΓ(X)

− 1

p
∼ da,pX2sp−2, (4.25)

as X →∞, where da,p =
2 cos

(
2πa
p

)
p +O(p−2) as p→∞.

Proof. For ε > 0 we define the character χε : Γ0(N)→ C defined by

γ 7→ e2πim±f (γ)ε.

Let λ0(ε) = s0(ε)(1 − s0(ε)) with s0(ε) > 1/2 be the smallest non-cuspidal eigenvalue of

the hyperbolic Laplacian acting on χε-automorphic functions (i.e. s0(ε) is the right-most

pole of the twisted Eisenstein series E(z, s, χε)). Here we put s0(ε) = 1/2 if there are no

residual eigenvalues. From this we define

sp := max
a∈(Z/pZ)×

s0(a/p),

which will turn out to control the variance. Note that sp < 1 for all p by Lemma 4.4.1.

By simple Fourier analysis on Z/pZ we have

#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}
#TΓ(X)

=
1

p

∑
b∈Z/pZ

1

#TΓ(X)

∑
γ∈TΓ(X)

χb/p(γ)e−2πiab/p. (4.26)

By Parseval this implies

∑
a∈Z/pZ

∣∣∣∣∣#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}
#TΓ(X)

∣∣∣∣∣
2

=
1

p

∑
a∈Z/pZ

∣∣∣∣∣
∑

γ∈TΓ(X) χa/p(γ)

#TΓ(X)

∣∣∣∣∣
2

.

Hence we have

Var(Yp,X) =
1

p

∑
a∈Z/pZ

∣∣∣∣∣#{γ ∈ TΓ(X) | m±f (γ) ≡ a mod p}
#TΓ(X)

∣∣∣∣∣
2

− 1

p2

=
1

p2

∑
a∈(Z/pZ)×

∣∣∣∣∣∣ 1

#TΓ(X)

∑
γ∈TΓ(X)

χa/p(γ)

∣∣∣∣∣∣
2

,

(4.27)
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since the contribution in the last sum for a ≡ 0 mod p is exactly 1/p2. Now by a contour

integration argument as in Proposition 4.4.4, we conclude that if s0(a/p) = 1/2 (i.e. there

are no non-cuspidal eigevalues in [0, 1/4) for the Laplacian acting on χa/p-automorphic

functions) then ∑
γ∈TΓ(X)

χa/p(γ) = Oε(X
1+ε).

On the other hand if s0(a/p) > 1/2, then we conclude that

∑
γ∈TΓ(X)

χa/p(γ) = ca,pX
2s0(a/p)(1 +O(X−δa,p)),

for some δa,p > 0 depending on the spectral gap between λ0(a/p) and λ1(a/p) and some

ca,p 6= 0 depending on the constant term of the non-cuspidal eigenfunction corresponding

to λ0(a/p). Combining this with (4.27), we deduce the formula (4.24).

We now want to understand the large p behavior. For this we employ perturbation

theory of the twisted Laplacian, as developed in [83, Section 4] and [33]. We have that

the smallest eigenvalue λ0(ε) = s0(ε)(1− s0(ε)) of the twisted Laplacian by the character

χε is real analytic in ε, for ε small enough. Moreover, we know that

s0(ε) = 1− cfε2 +O(ε3), (4.28)

as ε→ 0, where

cf =
8π2‖f‖2

vol(Γ)Ω2
f,±

, (4.29)

see [18, Section 4] or [79] for more details.

Now fix ε > 0 small enough such that (4.28) holds. We want to show that if θ ∈

[ε, 1 − ε], then λ0(θ) is bounded away from 0 (and hence s0(θ) is bounded away from

1). This follows almost directly from [33, Proposition 2.1]. Suppose the contradiction,

i.e. there exists a sequence {θj} ⊂ [ε, 1 − ε] such that λ0(θj) → 0. By a compactness

argument, by passing to a subsequence, we can assume that there exists θ∗ ∈ [ε, 1 − ε]

such that θj → θ∗. Denote by fj ∈ L2(Γ\H, χθj ) the corresponding eigenfunctions with

eigenvalues λ0(θj). By the continuity statement in [33, Proposition 2.1], we conclude that

there exists f∗ ∈ L2(Γ\H, χθ∗) such that a subsequence of (fj) is L2-convergent to f∗ and

∆f∗ = 0. But this means that f∗ is constant, and hence θ∗=0, which is a contradiction.
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By conjugation, we have s0(ε) = s0(−ε). Using the above and (4.28), we conclude

that for p large enough, we have that sp = s0(1/p) = s0(−1/p) = s0((p − 1)/p), which

combined with (4.28) gives the wanted.

Now, from (4.27), we note that the main term in the variance is given by the

contributions of a = 1 and a = p − 1 in the sum. By (4.22) we have #TΓ(X) =

(πvol(Γ))−1X2(1 + O(X−ν)), for some ν > 0. Furthermore, we know that the eigen-

function (and in particular its constant Fourier coefficient) corresponding to s0(ε) varies

analytically with ε (for ε small enough) and we can deduce that

Ress=s0(ε) L(s, χε) =
1

πvol(Γ)
+O(ε2),

see [18] for more details. Hence, from (4.27) and Proposition 4.4.4, we deduce that

cp =
2

p2
+O(p−3).

Finally for p large enough, we see that the main term in (4.26) comes from b = 0, and

the second main term is given by

1

p
(c1,pe

−2πi/p + cp−1,pe
2πi/p)X2s0(1/p)−2,

which by the above gives (4.25).

We note that the inequality (4.4) does indeed follow from (4.25).

Remark 4.5.4. We note that it should be straightforward to generalise Theorem 4.5.3 to

Hn, as the perturbation theory of the first eigenvalue of the Laplacian has been developed

by Epstein [33] for Hn.

4.5.4 Cohomology classes ordered by lengths of geodesics

We now give a proof of Theorem 4.1.11 showing equidistriburion of the values of coho-

mology classes when ordered by the lengths of the geodesics corresponding to conjugacy

classes of Γ. This will be an almost direct consequence of a twisted trace formula for

SO(n+ 1, 1). Our method is in the spirit of [78], where Petridis–Risager show that for co-

compact subgroups of SL2(R) the values of modular symbols are asymptotically normally

distributed when ordered by the length of the corresponding geodesics. This was in turn

inspired by ideas of Phillips and Sarnak [82].
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We firstly consider the case n = 1. If γ =

a b

c d

 ∈ SL2(R) is hyperbolic, then γ

is conjugate in SL2(R) to a unique element

λ 0

0 λ−1

 with λ > 1. Let Γ be a discrete,

cofinite subgroup of SL2(R). We know that for each hyperbolic conjugacy class {γ} ∈

Conjhyp(Γ) there is a corresponding geodesic of length l(γ) = log λ2. It is a consequence

of the twisted trace formula for Γ that for any unitary character χ of Γ, we have

∑
{γ0} primitive
l(γ0)≤X

χ(γ0) =
∑

s∈Ω(χ)

Li(esX) +Oχ(e
3
4
X),

where Li(x) =
∫ x

2 (log t)−1dt is the logarithmic integral (see [41, p. 475]). Hence we obtain

∑
{γ}∈Conjhyp(Γ)

l(γ)≤X

χ(γ) ∼
∑

{γ0} primitive
l(γ0)≤X

χ(γ0) ∼ li(es0(χ)X)

where the first sum is over all hyperbolic classes. Therefore, using Lemma 4.4.1, we obtain

that for some ν(χ) > 0,

1

|{{γ} ∈ Conjhyp(Γ) : 0 < l(γ) ≤ X}|
∑

{γ}∈Conjhyp(Γ)

l(γ)≤X

χ(γ) = 1χ +O(e−ν(χ)X),

where 1χ is 1 if χ is trivial and 0 otherwise. Now the proof follows using the Weyl’s

criterion.

We now discuss the general case n. As mentioned earlier, the first proof of the Prime

Geodesic Theorem in the general case was given by Gangolli and Warner [35]. The trace

formula for cofinite subgroups of SO(n + 1, 1) acting on Hn+1 was developed by Cohen

and Sarnak in [14, Ch. 7]. As a consequence, they obtain the following stronger version

of Prime Geodesic Theorem for Hn+1 [14, Thm. 7.37]:

πΓ(X) =
∑

n/2<sj≤n

Li(esjX) +O
(
e(n− n

n+2
)X
)

where the sum is taken over all n/2 ≤ sj ≤ n such that sj(n− sj) is an eigenvalue of −∆

acting on L2(Γ\H). Now we would like to apply a trace formula where we allow twists by
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characters. We did not find a place in literature where it is written down explicitly, and

to keep the exposition simple we will leave out the details. The analysis should be similar

to the case n = 1 and is furthermore implied to hold by Sarnak in [89, p. 6]. Similarly,

Phillips and Sarnak [82] prove a theorem about distribution of geodesics in homology

classes for quotients of Hn+1, but only treat the case n = 1 in detail. The twisted trace

formula for Hn+1 that we need is exactly the same one which is implicit [82].

As in the 2 dimensional case, we would get

∑
{γ}∈Conjhyp(Γ)

l(γ)≤X

χ(γ) ∼ Li(es0(χ)X)

from which Theorem 4.1.11 follows by Weyl’s Criterion as above.

4.6 On the size of certain cohomology groups

In Chapter 4 of this thesis we study the distribution of certain cohomology classes which

can be identified with the unitary characters of cofinite subgroups Γ < SO(n + 1, 1) (or

equivalently Γ < SVn−1) with cusps. It is now a natural question to ask how many

unitary characters (or cohomology classes) our results actually apply to. This amounts

to finding the dimensions of the relevant spaces of unitary characters or equivalently of

certain cohomology groups. This last perspective is most useful when comparing it to the

existing literature. We will mostly restrict to arithmetic subgroups, which we will define

shortly. Then we will define the cohomology groups that are relevant and finally survey

what is known about their size.

4.6.1 Congruence subgroups

We will now define what we mean by a congruence subgroup, which most of the results

mentioned below applies to. In this case one can obtain quite explicit descriptions of the

double coset Γ′∞\Γ/Γ′∞ occuring in Theorem 4.1.8.

Let J ⊂ Cn be an order stable under the involutions − and ∗. We put SVn(J) :=

SVn ∩M2(J). We also define V (J) := J ∩ Vn and T (J) = J ∩ Tn. For N ∈ N, we define

the principal congruence subgroup

SVn(J ;N) :=
{(

a b
c d

)
∈ SVn(J) | a− 1, b, c, d− 1 ∈ NJ

}
. (4.30)
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A subgroup Γ < SVn(J) is called a congruence subgroup if SVn(J ;N) < Γ, for some

N ∈ N. We quote [31, Section 4] to provide an explicit description for representatives

of Γ′∞\Γ/Γ′∞ in the case Γ = SVn(J ;N). In this case, C(Γ) = N · T (J) and a set of

representatives for ( a bc d
)
∈ Γ′∞\Γ/Γ′∞ with c 6= 0 is given by

{(
a b
c d

)
∈ SVn(J) | c ∈ N · T (J), (a, d) ∈ D(c)

}
where

D(c) :=

 (a, d)
a ∈ J/(N · V (J) · c), d ∈ J/(N · c · V (J)),

a− 1, d− 1 ∈ N · J, ac, cd ∈ N · V (J)

 .

In the more familiar cases n = 1 and n = 2, the above reduces to the following.

• n = 1. Then SV0 = SL2(R), J = Z and SV1(J ;N) = Γ1(N). Representatives in

Γ1(N)′∞\Γ1(N)/Γ1(N)′∞ with c 6= 0 are uniquely determined by

{(a, c) | c > 0, N | c, a ∈ (Z/cNZ)∗, a ≡ 1 mod N} .

If we consider Γ = Γ0(N), then representatives are uniquely determined by

{(a, c) | c > 0, N | c, a ∈ (Z/cZ)∗} .

• n = 2. Then SV1 = SL2(C). We take J = OK , where OK is the ring of integers of

a quadratic imaginary field K. Let n < OK be an ideal. We consider congruence

subgroups of the form

Γ1(n) :=
{(

a b
c d

)
∈ SL2(OK) | a− 1, b, c, d− 1 ∈ n

}
,

Γ0(n) :=
{(

a b
c d

)
∈ SL2(OK) | c ∈ n

}
.

In the case Γ1(n), representatives are uniquely provided by

{(a, c) | c ∈ n \ {0}, a ∈ (OK/(c · n))∗, a− 1 ∈ n} ,
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while for Γ0(n) we have

{(a, c) | c ∈ n \ {0}, a ∈ (OK/(c))∗} .

Remark 4.6.1. There is also a notion of congruence groups for SO(n + 1, 1). To define

them, let Γ be the integral automorphisms of an isotropic quadratic form of signature

(n + 1, 1) defined over Q. Then a congruence subgroup of Γ is any subgroup containing

{γ ∈ Γ | γ ≡ In+2 mod N} for some positive integer N , see [89, p. 7]. If Γ < SO0(n+1, 1)

is a congruence subgroup, then Ψ−1(Γ) is a congruence subgroup in SVn−1. However, the

converse is not true, there exists a congruence subgroup Γ < SVn−1 such that Ψ(Γ) is not

a congruence subgroup in SO0(n+ 1, 1), see [31, Section 3] for more details.

4.6.2 The first cohomology group

We refer to [98, Chapter 8] for a comprehensive account. The first cohomology group of Γ

with coefficients in a Z[Γ]-module A is defined as the quotient between the corresponding

coboundaries and cocycles;

H1(Γ, A) := Z1(Γ, A)/B1(Γ, A),

where

Z1(Γ, A) := {ω : Γ→ A | ω(γ1γ2) = ω(γ1) + γ1.ω(γ2),∀γ1, γ2 ∈ Γ}

and

B1(Γ, A) := {ω : Γ→ A | ∃a ∈ A : ω(γ) = γ.a− a,∀γ ∈ Γ}.

Furthermore given a subset P ⊂ Γ, we will be studying the first P -cohomology group of

Γ with coefficients in A defined by;

H1
P (Γ, A) := {ω ∈ H1(Γ, A) | ω(p) ∈ (p− 1)A, ∀p ∈ P}.

We will in particular study the distribution of P -cohomology group in the case where

P = Γ′∞ is the set of parabolic elements of Γ fixing ∞ and A is given by the circle R/Z

equipped with the trivial Γ-action. In this case H1
P (Γ,R/Z) computes exactly the unitary

characters of Γ trivial on Γ′∞.

Now we will make some general comments on the structure and size of H1
P (Γ,R/Z).
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4.6.3 On the structure of the cohomology groups

We recall that for A a trivial Γ module we have

H1(Γ, A) ∼= HomZ(Γ/[Γ,Γ], A),

which is a special case of the Universal Coefficients Theorem since H1(Γ,Z) ∼= Γ/[Γ,Γ].

From this we see that H1(Γ,R/Z) can be identified with the unitary characters of Γ. It

is known [94, p. 484] that Γ is finitely presented and thus Γ/[Γ,Γ] is a finitely gener-

ated abelian group. From this we see that we have a splitting of the cohomology group

H1(Γ,R/Z) in a free part and a torsion part;

H1(Γ,R/Z) ∼= H1
free(Γ,R/Z)⊕H1

tor(Γ,R/Z),

where the R/Z rank of H1
free(Γ,R/Z) is the same as the dimension of H1(Γ,R) and the

size of H1
tor(Γ,R/Z) is equal to the size of the torsion in H1(Γ,Z) ∼= Γ/[Γ,Γ].

We have a further Eichler–Shimura splitting of the free part due to Harder [40];

H1(Γ,R) ∼= H1
cusp(Γ,R)⊕H1

Eis(Γ,R), (4.31)

where H1
cusp(Γ,R) is the cuspidal part corresponding to certain automorphic forms for Γ

(as we will see shortly) and H1
Eis(Γ,R) is the (remaining) Eisenstein part, which can be

canonically defined. The cuspidal part H1
cusp(Γ,R) can be identified with H1

P (Γ,R) where

P is the set of all parabolic elements of Γ and furthermore all of the above splittings are

compatible with the Hecke action, when Γ is arithmetic.

There has been a lot of work recently on the study of the size of respectively

H1
cusp(Γ,R), H1

Eis(Γ,R) and H1
tor(Γ,R/Z), and we will now collect the relevant results

for our problem. We observe that the image of Γ′∞ in Γ/[Γ,Γ] is either trivial, finite

or isomorphic to Z. Thus we conclude that H1
Γ′∞

(Γ,R/Z) is non-trivial as soon as, say

H1(Γ,R/Z) is not generated by a single element or H1
cusp(Γ,R) is non-trivial.

4.6.4 The dimension of cohomology groups

It is a result of Kazhdan [54] that for discrete, cofinite subgroups of real Lie groups of

rank larger than 1, the abelianization is always torsion. In our case, since SO(n+ 1, 1) is
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of rank one, we can however hope to see some free part. In the case of cofinite subgroups

Γ ⊂ SO(n+1, 1), the dimension of H1(Γ,R) (or equivalently the free part of Γ/[Γ,Γ]) is not

very well understood for arbitrary n. The best lower bounds of the rank available in the

literature seem to be what follows from the work of Millson [70] and Lubotzky [60], which

gives that any arithmetic subgroup Γ (with a few restrictions when n = 3, 7) contains

a subgroup such that the dimension of H1(Γ,R) is at least one. In certain arithmetic

situations, we will be able to say more using a connection to automorphic forms.

4.6.4.1 Cohomology classes associated to automorphic forms

Recall the splitting (4.31) due to Harder of the cohomology into a cuspidal and an Eisen-

stein part. We give a brief overview of the description of H1
cusp(Γ,R) in terms of automor-

phic forms, as in [89]. We recall the canonical isomorphism between H1(Γ,R) and the de

Rham cohomology group H1
dR(Γ\Hn+1,R) consisting of 1-forms. Inside H1

dR(Γ\Hn+1,R)

we define the subset of cuspidal harmonic 1-forms.

Definition 4.6.2. A harmonic 1-form α = f0dx0 + f1dx1 + · · ·+ fndxn on Γ\Hn+1 is a

cuspidal 1-form if

1. α is rapidly decreasing at all cusps of Γ,

2. for each cusp a and y ≥ 0, we have

∫
Pa

fa,i(x, y)dx = 0 , i = 0, . . . , n ,

where σ∗aα = fa,0dx0 + fa,1dx1 · · ·+ fa,ndxn.

We denote by Har1
cusp(Γ\Hn+1,R) the space of harmonic cuspidal 1-forms on Γ\Hn+1.

Then we have the following identification

Har1
cusp(Γ\Hn+1,R) ∼= H1

cusp(Γ,R),

coming from [89, (2.14)]. This reduces the task of lower bounding the dimension of

H1
cusp(Γ,R) to constructing cuspidal automorphic forms. For congruence subgroups

Γ < SVn−1, this can be achieved using certain theta lifts developed by Shintani [99] of

GL2 holomorphic forms of weight (n+ 1)/2 + 1 (for details see [89, page 21]). This gives

us non-trivial examples for which Theorem 4.1.8 applies for any n. In the low-dimensional



4.6. On the size of certain cohomology groups 125

cases n = 1, 2 a lot more can be said, as we will see below.

Finally let us see explicitly how to construct unitary characters from cuspidal auto-

morphic forms. We let

Φ : Γ→ H1(Γ,Z), γ 7→ {∞, γ∞}

which induces the canonical isomorphism H1(Γ,Z) ∼= Γ/[Γ,Γ]. For γ ∈ Γ and ω ∈

Har1
cusp(Γ\Hn+1,R), we define the Poincaré pairing

〈γ, ω〉 := 2πi

∫
Φ(Γ)

ω = 2πi

∫ γP

P
ω for any P ∈ Hn+1.

We note that that when n = 1 and f is a classical Hecke cusp form of weight 2 for Γ, then

f(z)dz is indeed a harmonic cuspidal 1-form on Γ\H2 and the Poincaré symbol is equal

to (minus) the standard modular symbol (4.1):

〈γ, f(z)dz〉 = 2πi

∫ aγ/cγ

∞
f(z)dz = −〈aγ/cγ , f〉 .

We observe that if γ ∈ Γ is parabolic, then 〈γ, α〉 = 0. Hence if we define χα(γ) := e(〈γ, α〉)

then χα defines a unitary character trivial on Γ′∞. The kernel of the map α 7→ χα is a full

rank lattice L inside Har1
cusp(Γ\Hn+1,R). If we assume that Γ is torsion-free, we indeed

obtain the identification H1
free(Γ,R/Z) ∼= Har1

cusp(Γ\Hn+1,R)/L.

4.6.4.2 The case of H2

When n = 1, we have explicit formulas for the dimensions of both the cuspidal and the

Eisenstein part. More precisely we have coming from [111, Prop. 6.2.3] that

H1
cusp(Γ,Z) ∼= R2g, H1

Eis(Γ,R) ∼= R2(h−1),

where g is the genus and h is the number of inequivalent cusps of the Riemann surface

Γ\H2. In particular if Γ = Γ0(N) is a standard Hecke congruence subgroup, we know

that g ∼ N ·
∏
p|N (1+p−1)

12 and h =
∑

d|N ϕ(d,N/d) and we conclude that we can find towers

of Hecke congruence subgroups such that both the cuspidal and Eisenstein part goes to

infinity.
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4.6.4.3 The case of H3

When n = 2 there has been a lot of activity recently and we refer to the survey of

Şengün [96] for an excellent and more thorough overview. In this case no formulas are

known in general for the ranks of the cuspidal and Eisenstein part and the best one can

hope for are lower bounds.

Regarding the Eisenstein part, we can describe it explicitly when Γ is torsion-free. In

this case, we have that H1
Eis(Γ,R) ∼= Rh, where h is the number of cusps of Γ\H3, see [32,

Proposition 7.5.6]. The same conclusion holds for co-finite subgroups Γ ≤ SL2(OD),

where OD is the ring of integers of the imaginary quadratic field Q(
√
D) with D < 0 a

fundamental discriminant not equal to −4,−3 (in which case there might be torsion in

Γ). In the case of co-finite subgroups Γ ≤ SL2(OD) with D = −4,−3 the picture is much

more mysterious, but a lot of numerics are available in [95] and [32, Ch. 7.5].

For the cuspidal part there are some useful results giving lower bounds on the rank.

First of all Rohlfs [85] showed that

dimH1
cusp(SL2(OD),R) ≥ ϕ(D)

6
− 1

2
− h(D),

where h(D) denotes the class number of Q(
√
D). Furthermore Şengün and Turkelli [97]

proved that if D is a fundamental discriminant such that h(D) = 1, p is a rational prime

which is inert in Q(
√
D) and Γ0(pn) ⊂ SL2(OD) is a congruence subgroup, then we have

dimH1
cusp(Γ0(pn),R) ≥ p6n,

as n→∞ (an upper bound of p10n has been proved by Calegari and Emerton [12]). In the

case of cocompact groups stronger results were obtained by Kionke and Schwermer [56].

4.6.5 Torsion in the (co)homology of arithmetic groups

Now we will discuss what is known about the torsion part ofH1(Γ,Z) when Γ ⊂ SO(n+1, 1)

is a cofinite, arithmetic subgroup. In the simplest case n = 1, we know that all the torsion

in the abeliazation comes from the torsion in the subgroup itself and thus in particular

Γ/[Γ,Γ] is torsion-free when Γ is so.

It was noticed a long time ago in unpublished work by Grunewald and Mennicke that

in the case n = 2 there is a lot of torsion in the abeliazation of congruence subgroups. See

Şengün’s work [95] for some recent extensive computations.



4.6. On the size of certain cohomology groups 127

The study of torsion in the abelianization of Γ fits into a more general framework of

understanding the torsion in the homology of arithmetic groups as in the work of Bergeron

and Venkatesh [4]. Bergeron and Venkatesh have conjectured that when Γ is a congruence

subgroup of SL2(OD) with D < 0 a negative fundamental discriminant, then the torsion

in Γ/[Γ,Γ] grows exponentially with the index [SL2(OD) : Γ].

More generally the conjectures predicts that the torsion in the cohomology of sym-

metric spaces associated to a semisimple Lie group G will grow exponentially in towers

of congruence subgroups exactly if we consider the middle dimensional cohomology and

if the fundamental rank (or “deficiency”) δ(G) := rank(G) − rank(K) is 1 (here K is a

maximal compact). It follows from [4, 1.2] that the fundamental rank of SO(n + 1, 1) is

equal to 1 exactly if n is even. And thus we see that we will have exponential growth of

the torsion of Γ/[Γ,Γ] when Γ runs through a tower of congruence groups exactly when

n = 2 (corresponding to Kleinian groups).

For n > 2 the torsion should conjecturally not grow exponentially, but there might

still be torsion, which is equally arithmetically interesting in view of [93]. There seems

however to be no experimental or theoretical work available in this case.

This concludes our discussion on the sizes of cohomology groups to which our results

apply.



Chapter 5

Dissipation of correlations of holomorphic

cusp forms

This chapter is mainly based on [17]. We would like to thank Peter Humphries for suggest-

ing the problem to us and for his help with triple product integrals, in particular equations

(5.26) and (5.27).

5.1 Introduction

Fix Γ = SL2(Z) and X = SL2(Z)\H. Let k be an integer. We denote by Ak(Γ) the space

of automorphic functions of weight k, that is functions f : H→ C which transform as

f(γz) = jγ(z)kf(z), for all γ ∈ Γ, (5.1)

where jγ(z) =
cz + d

|cz + d|
with γ =

∗ ∗
c d

. We denote by Lk(X) the space of automor-

phic functions of weight k which are square-integrable. We see that if f ∈ Sk(Γ), then

yk/2f(z) ∈ Lk(X).

We have the Maaß raising and lowering operators

Kk : Lk(X)→ Lk+2(X) and Λk : Lk(X)→ Lk−2(X),

which allow us to move between automorphic functions of different weights, see 5.5 for

definitions. Hence, for even integers k1 ≤ k2 we define the operators

Rk2
k1

: Lk1(X)→ Lk2(X), φ 7→ Kk2−2 . . .Kk1+2Kk1φ

‖Kk2−2 . . .Kk1+2Kk1φ‖
,
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where ‖Rk2
k1
φ‖ = 1. We prove the following theorem.

Theorem 5.1.1. Fix any φ ∈ Cb(Γ\H) (a bounded function on on Γ\H). Let f and g

be L2-normalised holomorphic Hecke cusp forms of weights k1 and k2 respectively with

k1 ≤ k2. Let

δf=g =


1, if f = g;

0, otherwise.

Along any sequences of such f and g, we have

∫
Γ\H

φ(z)Rk2
k1

(
yk1/2f(z)

)
yk2/2g(z)dµ(z)→ δf=g

3

π

∫
Γ\H

φ(z)dµ(z) as k2 →∞.

In other words, if Fk1(z) = yk1/2f(z) and Gk2(z) = yk2/2g(z), then

〈
φ
(
Rk2
k1
Fk1

)
, Gk2

〉
→ δf=g

1

vol(X)
〈φ, 1〉 as k2 →∞.

Remark 5.1.1. This corresponds to a generalisation of Quantum Unique Ergodicity by

classifying the possible quantum limits of Hecke cusp forms when we project back to

the modular surface. That is, along any sequence of holomorphic Hecke eigenforms of

increasing weight, we show there are two possible limit points.

We also consider the case where we do not raise Fk1 to weight k2, but rather project

into Lk2−k1(X). These statements are not the same, since there are extra normalising

factors that play an important role.

Theorem 5.1.2. Fix φ ∈ Cb(X). Let l be a nonnegative even integer. Let f and g vary

along a sequence of Hecke cusp forms of weights k and k + l respectively. Then

∫
Γ\H

(
Rl0φ(z)

)
yk+l/2f(z)g(z)dµ(z)→ δf=g

3

π

∫
Γ\H

φ(z)dµ(z) as k →∞.

In other words, we have

〈(
Rl0φ

)
Fk, Gk+l

〉
→ δf=g

1

vol(X)
〈φ, 1〉 as k →∞.

Remark 5.1.2. In Theorem 5.1.2, we can also allow l to grow with k. Our method works

if l ≤ c log log k, where c < 1
12 log 2 .
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Remark 5.1.3. It is crucial for us in Theorem 5.1.2 that φ is obtained from repeated itera-

tions of raising operators. We expect the statement to hold for all φ ∈ Ll(X). However, to

achieve this we would also need to compute inner products of the type
〈
(RlmFm)Gk, Hk+l

〉
,

which in representation theory corresponds to a triple integral of three discrete series repre-

sentations. The local factors of such integrals are difficult to estimate. The local factors of

triple product integrals where at least one factor comes from principal series representation

(Maaß forms) were computed by Cheng [13].

We use the spectral theory of weight k automorphic functions, which we summarise

thoroughly in Section 5.2. We can write a decomposition of Lk(X) in terms of eigenfunc-

tions of the weight k Laplacian ∆k. The spectral expansion will involve:

• Hecke Maaß cusp forms Rk0uj raised to weight k;

• raised holomorphic Hecke cusp forms Rkl (Fl), for 0 < l ≤ k;

• weight k Eisenstein series Ek
(
z, 1

2 + it
)
.

Therefore, it is enough to compute inner products of type 〈φFk1 , Gk2〉 or
〈
φRk2

k1
Fk1 , Gk2

〉
,

where φ appears in the spectral decomposition. We proceed similarly as in the work

of Holowinsky [43] and Soundararajan [102]. Our new ingredient is to incorporate the

spectral theory of weight k automorphic functions to their method, which we review in

Section 5.2. We have two approaches, depending on the size of

S(f, g) := L(1, sym2f)L(1, sym2g). (5.2)

Firstly, we can compute directly the inner products, using Rankin–Selberg unfolding for

the Eisenstein series and Ichino’s formula for the Maaß cusp form case, see Section 5.3.

The formulas will involve central values of L-functions, to which we apply the weak sub-

convexity results of Soundararajan. This will win if S(f, g) is large.

Alternatively, we can expand the inner products in terms of the Fourier expansions.

We need bounds for the Fourier coefficients of weight k automorphic forms, which we

compute in Section 5.4. This approach boils down to bounding shifted convolution sums,

where we apply the results of Holowinsky, see Section 5.5. This will win if S(f, g) is

sufficiently small. We put everything together and complete the proofs of Theorems 5.1.1

and 5.1.2 in Section 5.6.
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5.2 Spectral theory of weight k automorphic forms

We quote [28, Chapter 4], [11, Chapter 2] for detailed expositions on the analytical theory

of weight k automorphic forms. Let k be an integer. We denote by Ak(Γ) the space of

automorphic functions of weight k, that is functions f : H→ C that transform by

f(γz) = jγ(z)kf(z), for all γ ∈ Γ, (5.3)

where jγ(z) =
cz + d

|cz + d|
with γ =

∗ ∗
c d

. Note that we have the cocycle relation

jγ1γ2(z) = jγ1(γ2z)jγ2(z), for all γ1, γ2 ∈ Γ.

Let Lk(Γ) the automorphic functions of weight k that are square-integrable. On Lk(Γ) we

define the inner product

〈f, g〉 =

∫
Γ\H

f(z)g(z)dµ. (5.4)

We consider the Maaß raising and lowering operators acting on C∞(H) (smooth func-

tions on H)

Kk =
k

2
+ y

(
i
∂

∂x
+

∂

∂y

)
=
k

2
+ (z − z) ∂

∂z
,

Λk =
k

2
+ y

(
i
∂

∂x
− ∂

∂y

)
=
k

2
+ (z − z) ∂

∂z
.

(5.5)

These operators are used to map between spaces of different weights:

Kk : C∞(Γ) ∩ Lk(Γ)→ C∞(Γ) ∩ Lk+2(Γ),

Λk : C∞(Γ) ∩ Lk(Γ)→ C∞(Γ) ∩ Lk−2(Γ),

and satisfy the following property:

〈Kkf, g〉 = −〈f,Λk+2g〉 , (5.6)

for f ∈ C∞(Γ) ∩ Lk(Γ) and g ∈ C∞(Γ) ∩ Lk+2(Γ). Moreover, the following product rule
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holds:

Kk+l(gkgl) = (Kkgk)gl + gk(Klgl),

Λk+l(gkgl) = (Λkgk)gl + gk(Λlgl),
(5.7)

where gk and gl are smooth automorphic functions of weights k and l respectively.

The Laplace operator of weight k is defined by

∆k = y2

(
∂2

∂x2
+

∂2

∂y2

)
− ik ∂

∂x
.

This can be written in terms of the raising and lowering operators as

∆k = −Kk−2Λk − λ(k/2) = −Λk+2Kk − λ(−k/2), (5.8)

where

λ(s) := s(1− s). (5.9)

The operator ∆k acts on Ak(Γ) ∩ C∞(Γ). We define a Maaß form to be a smooth auto-

morphic function of weight k which is an eigenfunction of ∆k. Let Ak(Γ, s) denote the

space of Maaß forms with eigenvalue λ(s). We also note that, if f(z) ∈ Ak(Γ, s) has at

most polynomial growth in cusp, it has a Fourier expansion of the form

f(z) = a0(y) +
∑
n6=0

af (n)W kn
2|n| ,s−

1
2
(4π|n|y)e(nx),

where Wα,β(z) is the Whittaker function, see [28] for more details.

We denote by Bk(Γ) the space of smooth automorphic functions of weight k such that

f,∆kf ∈ Lk(Γ). Then −∆k defines a symmetric, non-negative operator on Bk(Γ). The

space Bk(Γ) is dense in Lk(Γ) and the operator −∆k admits a self-adjoint extension to

Lk(Γ) and we can study the spectral decomposition of this space.

5.2.1 Eisenstein Series

The Eisenstein series of weight k is defined by

Ek(z, s) :=
∑

γ∈Γ∞\Γ

(Im γz)sjγ(z)−k, (5.10)
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The series (5.10) converges absolutely for Re(s) > 1 and has analytic continuation to the

whole complex plane. Unless k = 0, Ek(z, s) has no poles for Re(s) ≥ 1/2. If k = 0, then

E(z, s) has a pole at s = 1 with residue

Ress=1E(z, s) =
3

π
. (5.11)

If s is not a pole of Ek(z, s), then Ek(z, s) is a weight k Maaß form with eigenvalue λ(s),

but it is not in Lk(Γ). We note that

KkEk(z, s) =

(
k

2
+ s

)
Ek+2(z, s), ΛkEk(z, s) =

(
k

2
− s
)
Ek−2(z, s).

Hence, if k is an even positive integer,

Kk−2 . . .K2K0E(z, s) = s(s+ 1) . . . (s+ k/2− 1)Ek(z, s) =
Γ(s+ k/2)

Γ(s)
Ek(z, s). (5.12)

As in [49], [28], [27] or [76], the Fourier expansion of Ek(z, s) is given by

Ek(z, s) =ys +
(−1)k/2Γ (s)2

Γ
(
s− k

2

)
Γ
(
s+ k

2

)φ(s)y1−s

+
(−1)k/2Γ (s)

2Γ
(
s+ |k|

2

)
ξ(2s)

∑
n>0

|n|s−1σ1−2s(|n|)W|k|/2,s−1/2(4π|n|y)e(nx)

+
(−1)k/2Γ (s)

2Γ
(
s− |k|2

)
ξ(2s)

∑
n<0

|n|s−1σ1−2s(|n|)W−|k|/2,s−1/2(4π|n|y)e(nx),

(5.13)

where

φ(s) =
ξ(2s− 1)

ξ(2s)
,

ξ(s) = π−s/2Γ(s/2)ζ(s) = ΓR(s)ζ(s),

σν(n) =
∑
d|n

dν .

Let ψ(y) be a smooth compactly supported function on R+. Then we define the

incomplete Eisenstein series

Ek(z|ψ) :=
∑

γ∈Γ∞\Γ

ψ(Im γz)jγ(z)−k,
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that is in Lk(Γ), but it is not a Maaß form. We denote by Ek(Γ) the space of all incomplete

Eisenstein series. Then ∆k acts on Ek(Γ) with purely continuous spectrum which covers

the interval [1/4,∞) with multiplicity one. Moreover, for any f ∈ Ek(Γ), we have the

expansion

f(z) =
1

4π

∫ ∞
−∞

〈
f,Ek

(
·, 1

2
+ it

)〉
Ek

(
·, 1

2
+ it

)
dt.

We let

Ψ(s) :=

∫ ∞
0

ψ(y)ys
dy

y

be the Mellin transform of ψ. Hence, Ψ(s) is entire and satisfies

Ψ(s)� (1 + |s|)−A (5.14)

for any A > 0, uniformly in vertical strips. By the Mellin inversion theorem, we have

ψ(y) =
1

2πi

∫
(σ)
y−sΨ(s)ds

for σ > 1. Using this, we observe that

Ek(z|ψ) =
1

2πi

∫
(2)

Ψ(−s)Ek(z, s)ds. (5.15)

5.2.2 Cusp forms

The orthogonal complement of Ek(Γ) in Lk(Γ) consists of functions whose zero Fourier

coefficient vanishes, which we denote by Ck(Γ). Then ∆k acts on Ck(Γ) with purely discrete

spectrum. We now provide a description of this space.

Let Ck(Γ, s) be the space of Maaß cusp forms of weight k and eigenvalue λ(s). Then

Kk : Ck(Γ, s)→ Ck+2(Γ, s) and Λk : Ck(Γ, s)→ Ck−2(Γ, s). Also,

KkF = 0 ⇐⇒ λ(s) = λ(−k/2) ⇐⇒ yk/2f(z) is holomorphic in z,

ΛkF = 0 ⇐⇒ λ(s) = λ(k/2) ⇐⇒ y−k/2f(z) is holomorphic in z.

If λ(s) 6= λ(−k/2), then the map

(
λ(s)− λ

(
−k

2

))−1/2

Kk : Ck(Γ, s)→ Ck+2(Γ, s)
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is a bijective isometry. A similar statement holds for Λk. Now for even integers k1 < k2

and λ(s) 6∈ {λ(−k1/2), . . . λ(−k2/2+1)}, we define the bijective isometry Rk2
k1

: Ck1(Γ, s)→

Ck2(Γ, s) given by

Rk2
k1

(s) :=
∏

k1≤l<k2
l≡2 mod 2

(
λ(s)− λ

(
−k

2

))−1/2

Kk2−2 . . .Kk1+2Kk1 . (5.16)

When k ≥ 0, the eigenspace of ∆k with eigenvalue λ(k/2) is given by

Ck
(

Γ,
k

2

)
=
{
yk/2f(z) | f ∈ Sk(Γ)

}
(5.17)

and

C−k
(

Γ,
k

2

)
=
{
yk/2f(z) | f ∈ Sk(Γ)

}
. (5.18)

The eigenspaces of ∆k in Ck (Γ,m/2) for even m in the range 0 < m ≤ k are determined

by classical cusp forms in Sm(Γ) with repeated applications of the Maaß raising operators.

Putting everything together, we have the following theorem, see [28, Corollary 4.4].

Theorem 5.2.1. Let k be an even positive integer. Let {uj(z)} be an orthonormal basis

of Maaß cusp forms of C0(Γ) with corresponding eigenvalues λ(sj). Also, choose {fj,m}

an orthonormal basis for Sm(Γ). Then an orthonormal basis of Ck(Γ) is given by

uj,k(z) :=
∏

0≤l<k/2

(λ(sj)− λ(−l))−1/2K2l(uj(z)),

uj,m,k(z) :=
∏

m≤l<k/2

(λ(m)− λ(−l))−1/2K2l (y
mfj,2m(z)) .

Remark 5.2.1. Since Selberg’s eigenvalue conjecture holds for Γ = SL2(Z), all the points

sj are on the line Re(sj) = 1/2.

Remark 5.2.2. We choose an orthonormal basis of Ck(Γ) consisting of Hecke–Maaß cusp

forms, i.e. common eigenfunctions of the Laplacian ∆k and all Hecke operators Tn. This

is possible because the operators Tn commute with ∆k, Kk and Λk. We denote such a

basis by

Bk := {uj,k} ∪

 ⋃
0<m≤k/2

{uj,m,k}

 . (5.19)
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We can compute the normalisation factors, as in [28, p. 508]. They are given by

α2(s, k) :=
∏

0≤l<k/2

(λ(sj)− λ(−l))−1 = (−1)k/2
Γ(s− k/2)

Γ(s+ k/2)
, (5.20)

β2(m, k) :=
∏

m/2≤l<k/2

(λ(m)− λ(−l))−1 =
Γ(m)

Γ
(
k+m

2

)
Γ
(
k−m

2 + 1
) . (5.21)

If f ∈ Sk1(Γ) and Fk1 = yk1/2f(z) ∈ Ck1(Γ, k1/2), we just denote the isometry

Rk2
k1

(k1/2) from (5.16) by Rk2
k1

: Ck1(Γ, k1/2)→ Ck2(Γ, k1/2) given by

Rk2
k1
Fk1 = β(k1, k2)Kk2−2.. . . .Kk1Fk1 . (5.22)

If uj is a cuspidal Maaß form with eigenvalue λ(1/2 + itj), then its Fourier expansion

is given by

uj(z) =
∑
n6=0

cj(|n|)√
|n|

W0,itj (4π|n|y)e(nx).

If uj is a Hecke eigenform, then the Hecke eigenvalues are given by cj(n)/cj(1), for positive

n. We can relate it to the Fourier expansion of uj,k, as in [49]:

uj,k(z) =
(−1)k/2Γ(1/2 + itj)

Γ
(

1
2 + k

2 + itj
) ∑

n>0

cj(|n|)√
|n|

Wk/2,itj (4π|n|y)e(nx)

+
(−1)k/2Γ(1/2 + itj)

Γ
(

1
2 −

k
2 + itj

) ∑
n<0

cj(|n|)√
|n|

W−k/2,itj (4π|n|y)e(nx).

(5.23)

Now, if f(z) ∈ Sk1(Γ) has Fourier expansion

f(z) = af (1)

∞∑
n=1

λf (n)n
k1−1

2 e(nz),

then we have the expansion

Rk2
k1

(Fk1(z)) = (−1)
k2−k1

2 β(k1, k2)af (1)

∞∑
n=1

λf (n)√
n
W k2

2
,
k1−1

2

(4πny)e(nx), (5.24)

where Fk1(z) = yk1/2f(z) as above.
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5.3 Integral triple product identities

Fix f and g holomorphic cusp forms of weights k1 and k2 respectively with k1 ≤ k2.

Denote Fk1 = yk1/2f(z) and Gk2(z) = yk2/2g(z). In this section we evaluate the inner

products 〈φFk1 , Gk2〉, where φ is an automorphic form of weight k2 − k1. If φ is an

Eisenstein series, we use the classical Rankin–Selberg integral method. If φ is a cusp form,

we evaluate the triple product integral using Ichino’s formula [45]. In both cases, it boils

down to estimating central values L(f × g, 1/2) or L(φ × f × g, 1/2), to which we apply

the subconvexity bounds of Soundararajan from [102].

We begin with the following proposition, which uses the Rankin–Selberg unfolding,

see [46, Proposition 13.1].

Proposition 5.3.1. We have

(4π)1−s− k1+k2
2 Γ

(
s+

k1 + k2

2
− 1

)
af (1)ag(1)

L(f × g, s)
ζ(2s)

=

∫
X
y(k1+k2)/2f(z)g(z)Ek2−k1(z, s)dµ.

Proof. Using an unfolding argument, for Re(s) > 1 we write the integral as

∫
Γ\H

Fk1(z)Gk2(z)Ek2−k1(z)dµ =

∫
Γ\H

Fk1(z)Gk2(z)
∑

γ∈Γ∞\Γ

(Im γz)sjγ(z)−(k2−k1)dµ

=
∑

γ∈Γ∞\Γ

∫
Γ\H

(Im γz)sFk1(z)Gk2(z)jγ(z)k1−k2dµ

=

∫ 1

0

∫ ∞
0

ysy
k1+k2

2 f(z)g(z)dydx

=

∫ 1

0

∫ ∞
0

ys+
k1+k2

2

∑
n,m≥1

af (n)ag(n)e2πi(n−m)xe−2π(n+m)ydydx

= af (1)ag(1)
∑
n≥1

λf (n)λg(n)n
k1+k2

2
−1

∫ ∞
0

ys+
k1+k2

2 e−4πnydy

= (4π)1−s− k1+k2
2 Γ

(
s+

k1 + k2

2
− 1

)
af (1)ag(1)

∑
n≥1

λf (n)λg(n)n−s.

We now write the inner products involving the Eisenstein series.

Lemma 5.3.1. Let s = 1
2 + it and α = k2−k1

2 . Then

|〈Ek2−k1 (·, s)Fk1 , Gk2〉| �ε
(1 + |t|)3/2(log k2)−1+ε(1 + α)1/2

(L(1, sym2f)L(1, sym2g))1/2
.
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and, for k1 < k2,

∣∣∣〈E (·, s)Rk2
k1
Fk1 , Gk2

〉∣∣∣�ε
Γ (k2 − α)1/2

Γ(k2)1/2Γ (α)1/2
kε2(1 + |t|)3/2 |s(s+ 1) . . . (s+ α− 1)| .

Proof. We use Proposition 5.3.1 and (2.19) to obtain

∣∣∣∣〈Ek2−k1

(
1

2
+ it, ·

)
Fk1 , Gk2

〉∣∣∣∣ =
π3/2Γ

(
k2+k1

2 − 1
2 + it

)
L
(

1
2 + it, f × g

)
ζ(1 + 2it)Γ(k1)1/2Γ(k2)1/2L(1, sym2f)1/2L(1, sym2g)1/2

.

We use the weak subconvexity bound of Soundararajan [102]:

∣∣∣∣L(1

2
+ it, f × g

)∣∣∣∣� (k1 + k2)1/2(1 + k2 − k1)1/2

(log k2)1−ε (1 + |t|).

We now use that for σ > 0, |Γ(σ+ it)| ≤ Γ(σ) and employ Stirling formula to deduce that

Γ(x+ 1/2) ∼ Γ(x)
√
x as x→∞. Since |ζ(1 + it)| � 1/ log(1 + |t|), we obtain

∣∣∣∣〈Ek2−k1

(
1

2
+ it, ·

)
Fk1 , Gk2

〉∣∣∣∣�ε

Γ
(
k2+k1

2

)
(1 + k2 − k1)

1
2 (1 + |t|)1+ε

(log k2)1−εΓ(k1)1/2Γ(k2)1/2L(1, sym2f)1/2L(1, sym2g)1/2

(5.25)

Finally we see that

Γ
(
k1+k2

2

)
Γ(k1)1/2Γ(k2)1/2

=

(
k1+k2−2
k1−1

)1/2(
k1+k2−2

(k1+k2)/2−1

)1/2 ≤ 1.

and the first part follows.

Now, for the second part, we use the adjointness property (5.6), the product rule

(5.7), together with the fact that Λk2Gk2(z) = 0, to see that

〈
E

(
1

2
+ it, z

)
Rk2
k1
Fk1(z), Gk2(z)

〉
=β(k1, k2)

〈
E

(
1

2
+ it, z

)
(Kk2−2 . . .Kk1Fk1(z)), Gk2(z)

〉
=(−1)

k2−k1
2 β(k1, k2)

〈(
Kk2−k1−2 . . .K0E

(
1

2
+ it, z

))
Fk1(z), Gk2(z)

〉

=(−1)
k2−k1

2

β(k1, k2)Γ
(
k2−k1

2 + 1
2 + it

)
Γ
(

1
2 + it

) 〈
Ek2−k1

(
1

2
+ it, z

)
Fk1(z), Gk2(z)

〉
.

If k1 = k2, then the conclusion follows. Now assume k1 < k2. Substituting β(k1, k2)
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from (5.21) and using (5.25), we have that
∣∣∣〈E (1

2 + it, ·
)
Rk2
k1
Fk1 , Gk2

〉∣∣∣ is bounded by

Γ
(
k1+k2

2

)1/2

Γ(k2)1/2Γ
(
k2−k1

2

)1/2

∣∣∣∣∣∣∣
∏

0≤j< k2−k1
2

(
1

2
+ j + it

)∣∣∣∣∣∣∣
(1 + |t|)1+ε

(log k2)1−εS(f, g)
1
2

.

We use the bound L(1, sym2f) � (log k1)−1, see [42], and similarly for g. Hence the

contribution from the last fraction is bounded by kε2 and the conclusion follows.

Next, we evaluate the inner products involving Hecke–Maaß cusp forms.

Lemma 5.3.2. Let ε > 0. We have

|〈uj,k2−k1Fk1 , Gk2〉| �ε
(1 + k2 − k1)1/2

(log k2)1/2−εL(1, sym2f)1/2L(1, sym2g)1/2
.

For Nε large depending on ε, we have

∣∣∣〈ujRk2
k1
Fk1 , Gk2

〉∣∣∣�ε,tj


1

(log k2)1/2−εL(1, sym2f)1/2L(1, sym2g)1/2
if k2 − k1 ≤ Nε;

k−1+ε
2 if k2 − k1 ≥ Nε.

Proof. From Ichino’s formula [45], we know that

∣∣∣∣∣
∫

Γ\H
uj,k2−k1(z)Fk1(z)Gk2(z)dµ(z)

∣∣∣∣∣
2

=
1

8

Λ(1/2, uj × f × g)

Λ(1, sym2uj)Λ(1, sym2f)Λ(1, sym2g)
I∗∞,

(5.26)

where I∗∞ is a certain local integral. When k1 = k2, Watson [110] shows that I∗∞ = 1. For

the general case, Woodbury [112] and Cheng [13] calculated for the real local place and

show that I∗∞ = 2−k2+k1 .

We have that

Λ(s, f × g × uj) =
∏
±

ΓR

(
s+

k1 + k2

2
± itj

)
ΓR

(
s+

k1 + k2

2
− 1± itj

)
× ΓR

(
s+

k2 − k1

2
± itj

)
ΓR

(
s+

k2 − k1

2
+ 1± ir

)
L(s, f × g × uj).
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Then it follows that

|〈uj,k2−k1Fk1 , Gk2〉|
2 �tj

Γ
(
k1+k2−1

2 + itj

)
Γ
(
k1+k2−1

2 − itj
)
L(1/2, f × g × uj)

Γ(k1)Γ(k2)L(1, sym2f)L(1, sym2g)
. (5.27)

We use the weak subconvexity bound [102]

L

(
1

2
, f × g × uj

)
�tj ,ε

(k1 + k2)(1 + k2 − k1)

(log k2)1−ε .

Similarly to the previous proof, we use that for σ ≥ 1/2, we have that Γ(σ+1/2) �
√
σΓ(σ)

and |Γ(σ+ itj)| ≤ Γ(σ). Also, as before, we know that Γ
(
k1+k2

2

)2
≤ Γ(k1)Γ(k2) and then

we conclude the first part of the lemma.

For the second part, we first note that

∣∣∣〈ujRk2
k1
Fk1 , Gk2

〉∣∣∣2 = β(k1, k2)2 |〈(Kk2−k1−2 . . .K0uj)Fk1 , Gk2〉|
2

=
β(k1, k2)2

α(sj , k2 − k1)2
| 〈uj,k2−k1Fk1 , Gk2〉 |2.

(5.28)

Now fix Nε large enough such that Nε > 1/ε and log n < nε, for n ≥ Nε. We treat

two separate cases, depending on whether k2 − k1 is smaller or larger than Nε.

1. If 0 ≤ k2 − k1 ≤ Nε. Then from definitions of (5.20) (5.21), we see that

β(k1, k2)2

α(sj , k2 − k1)2
�ε,tj 1

and the conclusion follows.

2. If k2 − k1 ≥ N ε. For notation simplicity, denote α = (k2 − k1)/2. We also use the

bounds L(1, sym2f) � (log k1)−1 and L(1, sym2g) � (log k2)−1. Now, from (5.20)

and (5.21), we see that

∣∣∣∣ β(k1, k2)2

α(1/2 + itj , k2 − k1)2

∣∣∣∣�tj

Γ(k1)Γ
(
α+ 1

2

)2
Γ
(
k1+k2

2

)
Γ (α+ 1)

=
Γ(k1)Γ(α+ 1)

Γ
(
k1+k2

2

) Γ
(
α+ 1

2

)2
Γ(α+ 1)2

�
(k1+k2

2 − 1

α

)−1
1

α
� k−1

2 α−1

Now the conclusion follows from (5.28).
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5.4 Bounds for Fourier coefficients

In order to evaluate Fourier coefficients of automorphic forms of weight k, it is useful to

define

F (k, t, y) :=
Wk,it(u)

Γ
(

1
2 + k + it

) +
W−k,it(u)

Γ
(

1
2 − k + it

) . (5.29)

In [50], Jakobson evaluated this expression as

F (k, t, y) = 2(−1)k
k∑
l=0

(−k)l(k)ly
l

(1/2)l4ll!

W0,l+it(y)

Γ
(

1
2 + l + it

) ,
where the Pochhammer symbol (x)l is defined by

(x)l := x(x+ 1) . . . (x+ l − 1); (x)0 = 1.

We use the fact that W0,ν(y) =
√

(y/π)Kν(y/2). We apply the integral representation

of the K-Bessel function [47, p. 205]

Kν(y) = π−1/2Γ

(
ν +

1

2

)(y
2

)−ν ∫ ∞
0

(u2 + 1)−ν−1/2 cos(uy)du,

which holds for y > 0 and Re(ν) > −1/2. From this we obtain

ylW0,l+it(y)

Γ
(

1
2 + l + it

) � y1/2

∣∣∣∣∫ ∞
0

(u2 + 1)−l−1/2−it cos(uy)du

∣∣∣∣
� y1/2

(
1 + l + |t|

y

)A(
1 +

1 + |t|
y

)ε
,

for any ε > 0 and any integer A ≥ 0.

Next we note that

∣∣∣∣(−k)l(k)ly
l

(1/2)l4ll!

∣∣∣∣ =
k

k + l

(
k + l

l

)
,

hence using the identity
m∑
l=0

(
k + l

l

)
=

(
k +m+ 1

m

)
,

we see that

F (k, t, y)� 4kkA
√
y

(
1 + |t|
y

)A(
1 +

1 + |t|
y

)ε
. (5.30)
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Also, from [46, B. 36], we have the asymptotic for large y

Kν(y) =

(
π

2y

)1/2

e−y
(

1 +O

(
1 + |ν|2

y

))
.

Now we are ready to give bounds for the Fourier coefficients of incomplete Eisenstein

series.

Lemma 5.4.1. Let Ek(z|ψ) an incomplete Eisenstein series with Fourier expansion

Ek(z|ψ) =
∑
n∈Z

an(y)e(nx).

Then

a0(y) = δk=0
3

π
Ψ(−1) +O (

√
y) ,

and for n 6= 0, we have

an(y) + a−n(y)� 2kkA
√
yτ(|n|)

(
1

|n|y

)A(
1 +

1

|n|y

)ε
,

for any ε > 0 and any integer A ≥ 0.

Proof. Using (5.15) and (5.13), we note that

a0(y) =
1

2πi

∫
(σ)

Ψ(−s)

(
ys +

(−1)k/2Γ (s)2

Γ
(
s− k

2

)
Γ
(
s+ k

2

)φ(s)y1−s

)
ds,

for some σ > 1. We want to move the line of integration to Re(s) = 1/2 and we notice

we that encounter a pole at s = 1 if and only if k = 0. Using the duplication formula

Γ(z)Γ(1− z) = π
sinπz and that |Γ(1/2 + it)|2 = π

coshπt , we observe that

∣∣∣∣∣ Γ
(

1
2 + it

)2
Γ
(

1
2 + it+ k

2

)
Γ
(

1
2 + it− k

2

)∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
π

coshπt
π

sinπ
(

1
2 + it+ k

2

)
∣∣∣∣∣∣∣∣ ∼ 1 as |t| → ∞.

Hence, by (5.14), we have that

a0(y) = δk=0
3

π
Ψ(−1) +O (

√
y) . (5.31)
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Note that, by unfolding, we see that

〈E0(z|ψ), 1〉 =

∫ 1/2

−1/2

∫ ∞
0

ψ(y)
dxdy

y2
= Ψ(−1).

Similarly, for n 6= 0, we have that

an(y) =
1

2πi

∫ ∞
−∞

Ψ

(
−1

2
− it

)
(−1)k/2Γ

(
1
2 + it

)
2Γ
(

1
2 + k

2 + it
)
ξ(1 + 2it)

|l|−
1
2

 ∑
ab=|n|

(a
b

)itW k
2
,it(4π|n|y)dt.

We easily see that

an(y) + a−n(y)� τ(|n|)|n|−1/2

∫ ∞
−∞

Ψ

(
−1

2
− it

)
Γ
(

1
2 + it

)
ξ(1 + 2it)

F

(
k

2
, t, 4π|n|y

)
.

The conclusion follows from (5.30).

Next we turn our attention to the Fourier coefficients of Maaß cusp forms.

Lemma 5.4.2. Let uj,k be a Maaß cusp form as defined in the previous section with

eigenvalue 1/4 + t2j . If its Fourier expansion is given by

uj,k(z) =
∑
n∈Z

an(y)e(nx),

then a0(y) = 0 and for n 6= 0, we have that

an(y) + a−n(y)� 2kkA
√
y|cj(|n|)|

(
1 + |tj |
|n|y

)A(
1 +

1 + |tj |
|n|y

)ε
.

Proof. From (5.23), we see that for n 6= 0, we have that

an(y) + an(−y) = Γ(1/2 + itj)cj(|n|)|n|−1/2F (k/2, tj , 4π|n|y).

Now the conclusion simply follows from (5.30).

Next we develop a formula for Whittaker functions of the form Wα+k,α− 1
2
(y), which

is useful for expressing the Fourier coefficients of Rk2
k1
Fk1 .
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Lemma 5.4.3. Let α > 0 and k ≥ 0 an integer. Then

Wα+k,α− 1
2
(y) = e−

y
2 yα

k∑
l=0

yk−l(−1)l
(
k

l

)
Γ(2α+ k)

Γ(2α+ k − l)
.

In particular, this implies that for y > 0 and α ≥ 1, we have

Wα+k,α− 1
2
(y)� 2ke−

y
2 yα((2α+ k)k + yk).

Proof. We proceed by induction on k. From [28, (4.21)], we see that

Wα,α− 1
2
(y) = yαe−y/2.

We use the recursion formula [39, (9.234)]

Wλ+1,µ(y) =

(
1

2
y − λ

)
Wλ,µ(y)− yW ′λ,µ(y).

We we see that Wα+k,α− 1
2
(y) is of the form

Wα+k,α− 1
2
(y) = e−

y
2 yα

k∑
l=0

yk−lPk,l(α)

where Pk,l(X) polynomial of degree l. The recursion formula gives us that, for 1 ≤ l ≤ k,

we have

Pk+1,l(α) = Pk,l(α)− (2α+ 2k − l + 1)Pk,l−1(α).

Moreover, Pk,0(α) = 1 and Pk,k(α) = (−1)k(2α)k, for all k. If we write Qk,l(X) = Pk,l
(
X
2

)
,

one can check by inducion on k that

Qk,l(X) = (−1)l
(
k

l

)
(X + k − 1)(X + k − 2) · · · (X + k − l).

The conclusion follows.
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5.5 Shifted convolution sums

Let φ ∈ Lk2−k1(X) with Fourier expansion

φ(z) = a0(y) +
∑
l 6=0

al(y)e(lx).

We want to evaluate 〈φFk1 , Gk2〉 by applying Holowinsky’s approach [43] by relating the

inner product to shifted convolution sums. In this section we prove the following theorem.

Theorem 5.5.1. Define

Mk1,k2(f, g) :=
1

(log k2)2L(1, sym2f)1/2L(1, sym2g)1/2

∏
p≤k2

(
1 +
|λf (p)|
p

)(
1 +
|λg(p)|
p

)
.

(5.32)

Fix ε > 0. Then there exists a constant Nε such that the following hold.

i Let uj,k2−k1 be a Hecke–Maaß form as above with eigenvalue 1/4 + t2j . Then

〈uj,k2−k1Fk1 , Gk2〉 �tj ,ε 2k2−k1(1 + k2 − k1)NεMk1,k2(f)1/2(log k2)ε.

ii For an incomplete Eisenstein series Ek2−k1(z|ψ), we have that 〈Ek2−k1(·|ψ)Fk1 , Gk2〉−

δf=g
3
π 〈E0(·|ψ), 1〉 is bounded by

Oψ,ε

(
2k2−k1(1 + k2 − k1)NεMk1,k2(f)1/2(log k2)ε(1 +Rk1,k2(f, g))

)
,

where

Rk1,k2(f, g) =
1

k
1/2
2 L(1, sym2f)1/2L(1, sym2g)1/2

∫ +∞

−∞

∣∣L (f × g, 1
2 + it

)∣∣
(|t|+ 1)5

dt.

Fix ψ smooth and compactly supported on R+ and Ψ(s) its Mellin transform. For

Y ≥ 1, we define

Iφ(Y ) :=
1

2πi

∫
(σ)

Ψ(−s)Y s

∫
X
E(z, s)φ(z)Fk1(z)Gk2(z)dµds (5.33)

for σ > 1.

Lemma 5.5.1. For φ a fixed a Hecke–Maaß cusp form or incomplete Eisenstein series,
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we have

〈φFk1 , Gk2〉 = c−1
Y Iφ(Y ) +Oψ

(
Y −1/2

)
, (5.34)

where

cY :=
3

π
Ψ(−1)Y . (5.35)

Proof. We move the contour of integration in (5.33) to the line Re(s) = 1/2. There is a

pole at s = 1 coming from the Eisenstein series, with residue

Ψ(−1)Y (Ress=1E(z, s)) 〈φFk1 , Gk2〉 = cY 〈φFk1 , Gk2〉 .

Therefore we obtain

Iφ(Y ) = cY 〈φFk1 , Gk2〉+

∫
X
p(z)φ(z)Fk1(z)Gk2(z)dµ , (5.36)

where

p(z) :=

∫
(1/2)

Ψ(−s)Y sE(z, s)ds .

On the line Re(s) = 1/2, from [43, Lemma 2.1], we have

E(z, s)�ε
√
y + |s|2y−3/2(1 + |s|/y)ε.

Using the fast decay of Ψ(s), we obtain p(z)�
√
yY if y ≥ 1/2. Going back to (5.36), if

we assume
√
y|φ(z)| is bounded on X, we conclude that

∫
X
p(z)φ(z)Fk1(z)Gk2(z)dµ�φ,ψ

√
Y .

The assumption that
√
y|φ(z)| is bounded on X is true for cusp forms and incomplete

Eisenstein series.

We observe that

Iφ(Y ) =
1

2πi

∫ ∞
0

ψ(Y y)y−2

(∫ 1/2

−1/2
φ(z)Fk1(z)Gk2(z)dx

)
dy . (5.37)

This follows from using a standard unfolding argument and then applying the inverse

Mellin transform.
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Proposition 5.5.1. Let Y > 1. For any ε > 0, there exists a constant Nε such that, for

φ a Hecke–Maaß cusp form or incomplete Eisenstein series, we have

〈φFk1 , Gk2〉 =c−1
Y

∫ ∞
0

ψ(Y y)y−2

(∫ 1/2

−1/2
φ∗(z)Fk1(z)Gk2(z)dx

)
dy

+O
(

2k2−k1(k2 − k1 + 1)NεY −1/2
)
,

where

φ∗(z) :=
∑

|l|<Y 1+ε

al(y)e(lx) .

Proof. We evaluate the contribution to Iφ(Y ) coming from large Fourier coefficients al(y)

of φ. Assume φ is an incomplete Eisenstein series of weight k2−k1. We make use of Lemma

5.4.1. The contribution coming from Fourier coefficients larger than Y 1+ε is bounded by

∑
|l|≥Y 1+ε

∫ ∞
0

∫ 1/2

−1/2
ψ(Y y)y−2al(y)|Fk1(z)||Gk2(z)|dxdy

�2k2−k1(k2 − k1 + 1)A

(∫ ∞
0

∫ 1/2

−1/2
ψ(Y y)y−2|Fk1(z)||Gk2(z)|dxdy

)
Y A−1/2+ε

∑
l>Y 1+ε

τ(l)

lA

�2k2−k1(k2 − k1 + 1)AY A+1/2+εY (1+ε)(1−A) � 2k2−k1(k2 − k1 + 1)AY −1/2,

if we choose A large enough with respect to ε. We note that the double integral is bounded

by O(Y ), since ∫
Γ\H
|Fk1(z)||Gk2(z)|dµ(z) ≤ ‖Fk1‖+ ‖Gk2‖ = 2,

and we know that y � 1/Y , −1/2 ≤ x ≤ 1/2, and by [47, Lemma 2.10] we know there are

O(Y ) copies of the fundamental domain in this region. The proof for Maaß forms follows

similarly.

For an integer l, we define

Sl(Y ) :=

∫ ∞
0

ψ(Y y)y−2

(∫ 1/2

−1/2
al(y)e(lx)Fk1(z)Gk2(z)dx

)
dy . (5.38)

Hence

cY 〈φFk1 , Gk2〉 = S0(Y ) +
∑

0<|l|<Y 1+ε

Sl(Y ) +O
(

2k2−k1(k2 − k1 + 1)NεY 1/2
)
. (5.39)
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We note that S0(Y ) ≡ 0 when φ is a cusp form.

Lemma 5.5.2. Let Y ≥ 1 and φ = Ek2−k1(z|h) an incomplete Eisenstein series of weight

k2 − k1. Then

c−1
Y S0(Y ) =δk1=k2

3

π
〈φ, 1〉+O(Y −1/2)

+O

((
Y k2)−1/2(|L(sym2f, 1)L(sym2g, 1)|

)−1/2
∫ ∞
−∞

∣∣L (f × g, 1
2 + it

)∣∣
(|t|+ 1)5

dt

)
.

Proof. From the definition of S0(Y ) and (5.31), we obtain

S0(Y ) =

(
δk1=k2

3

π
〈φ, 1〉+O

(
Y −1/2

))∫ ∞
0

ψ(Y y)y
k1+k2

2
−2

(∫ 1/2

−1/2
f(z)g(z)dx

)
dy .

Expanding the product f(z)g(z) as a Fourier sum and computing the inner integral above,

we obtain

S0(Y ) =

(
δk1=k2

3

π
〈φ, 1〉+O

(
Y −1/2

))∑
n≥1

af (n)ag(n)

∫ ∞
0

ψ(Y y)y
k1+k2

2
−2e−4πnydy .

We evaluate the integral in y using the inverse Mellin transform.

∫ ∞
0

ψ(Y y)y
k1+k2

2
−2e−4πnydy =

∫ ∞
0

(
1

2πi

∫
(σ)

(Y y)sΨ(−s)ds

)
y
k1+k2

2
−2e−4πnydy

=
1

2πi

∫
(σ)
Y sΨ(−s)(4πn)−s−

k1+k2
2

+1Γ

(
s+

k1 + k2

2
− 1

)
ds,

Hence

∑
n≥1

af (n)ag(n)

∫ ∞
0

ψ(Y y)y
k1+k2

2
−2e−4πnydy =

=
1

2πi
af (1)ag(1)(4π)1− k1+k2

2

∫
(σ)

(
Y

4π

)s
Ψ(−s)L(f × g, s)

ζ(2s)
Γ

(
s+

k1 + k2

2
− 1

)
ds .

We move the contour of integration to the line Re(s) = 1/2. We note that we pick up a

pole at s = 1 if and only if f = g. In this case, we use (2.19) to compute the residue.

Therefore, we obtain

∑
n≥1

af (n)ag(n)

∫ ∞
0

ψ(Y y)y
k1+k2

2
−2e−4πnydy = δf=g

3

π
Ψ(−1)Y + E(Y ),
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where

E(Y ) =
1

2πi
af (1)ag(1)(4π)1− k1+k2

2

×
∫ ∞
−∞

(
Y

4π

)1/2+it

Ψ

(
−1

2
− it

)
L
(
f × g, 1

2 + it
)

ζ(1 + 2it)
Γ

(
k1 + k2

2
− 1

2
+ it

)
dt.

From [106, p.51], we know that ζ(1 + it) � (log t)−7. Hence, using the rapid decay of

Ψ(−s) guaranteed by (5.14) and expanding af (1)ag(1) as in (2.19), we obtain

E(Y )� Y 1/2

(
k1+k2−2
k1−1

)1/2
(k1 + k2)1/2

(k1+k2−2
k1+k2

2
−1

)1/2 |L(sym2f, 1)L(sym2g, 1)|−1/2

∫ ∞
−∞

∣∣L (f × g, 1
2 + it

)∣∣
(|t|+ 1)10

dt

� Y 1/2k
−1/2
2 |L(sym2f, 1)L(sym2g, 1)|−1/2

∫ ∞
−∞

∣∣L (f × g, 1
2 + it

)∣∣
(|t|+ 1)10

dt.

Lemma 5.5.3. Let φ be a fixed automorphic form. Then for l 6= 0, we have

c−1
Y Sl(Y )�

∣∣∣∣ al(Y
−1)

L(sym2f, 1)1/2L(sym2g, 1)1/2

∣∣∣∣
 1

Y k2

∑
n�Y k2

|λf (n)λg(n+ l)|+ Y ε(k1 + k2)−1+ε

 .

Proof. Expanding the Fourier sum in the definition (5.38), we obtain

Sl(Y ) =
∑
n≥1

af (n)ag(n+ l)

∫ ∞
0

ψ(Y y)al(y)y
k1+k2

2
−2e−2π(2n+l)dy .

We note that the inner integral is only supported for y � 1/Y . Hence

Sl(Y )� |al(Y −1)|
∑
n≥1

af (n)ag(n+ l)

∫ ∞
0

ψ(Y y)y
k1+k2

2
−2e−2π(2n+l)dy .

Similarly as in the proof of Lemma 5.5.2, using the inverse Mellin transform and evaluating

the inner integral, we obtain

Sl(Y )� |al(Y −1)|
∑
n≥1

af (n)ag(n+ l)
1

2πi

∫
(σ)
Y sΨ(−s)(2π(2n+ l))1−s− k1+k2

2 Γ

(
s+

k1 + k2

2
− 1

)
ds.
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From (2.19), we see that

Sl(Y )�
∣∣∣∣ al(Y

−1)

L(sym2f, 1)1/2L(sym2g, 1)1/2

∣∣∣∣∑
n≥1

|λf (n)λg(n+ l)|An,l(Y ) ,

where

An,l(Y ) :=

n k1−1
2 (n+ l)

k2−1
2(

n+ l
2

) k1+k2
2
−1

 1

2πi

∫
(σ)

Ψ(−s)
(

Y

2π(2n+ l)

)s Γ(s+ k1+k2
2 − 1)

Γ(k1)1/2Γ(k2)1/2
ds.

If we interchange f and g, which we can without losing the generality, then the first term

will be bounded above by 1. From Stirling’s relations, any vertical strip 0 < a ≤ Re(s) ≤ b

and k > 1, we have
Γ(s+ α)

Γ(α)
= αs

(
1 +Oa,b

(
(|s|+ 1)2α−1

))
, (5.40)

see [43, (19)]. Choosing the line of integration Re(s) = σ = 1 + ε, we obtain

An,l(Y )� 1

2πi

∫
(σ)

Ψ(−s)
(

Y

2π(2n+ l)

)s Γ(s+ k1+k2
2 − 1)

Γ
(
k1+k2

2 − 1
) Γ

(
k1+k2

2 − 1
)

Γ(k1)1/2Γ(k2)1/2
ds

�
(
k1+k2−2
k1−1

)1/2
(k1 + k2)

(k1+k2−2
k1+k2

2
−1

)1/2
ψ

Y
(
k1+k2

2 − 1
)

2π(2n+ l)

+ (k1 + k2)ε
(

Y

2n+ l

)1+ε
 .

Therefore we get

Sl(Y )�
∣∣∣∣ al(Y

−1)

L(sym2f, 1)1/2L(sym2g, 1)1/2

∣∣∣∣
 1

k2

∑
n�Y k2

|λf (n)λg(n+ l)|+ Y 1+ε(k1 + k2)−1+ε

 .

We recall [43, Theorem 1.2].

Theorem 5.5.2. Let λ1(n) and λ2(n) be multiplicative functions such that |λi(n)| ≤ τ(n).

Then for any 0 < δ < 1 and any fixed integer 0 < |l| ≤ x, we have

∑
n≤x
|λ1(n)λ2(n+ l)| � x(log x)−2+δτ(|l|)

∏
p≤z

(
1 +
|λ1(p)|
p

)(
1 +
|λ2(p)|
p

)

where z = exp
(

log x
δ log log x

)
.
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We apply Theorem 5.5.2 with λ1 = λf and λ2 = λg. The Ramanujan conjecture for

holomorphic cusp forms ensures that the conditions in the statement of the theorem are

satisfied. There exists a constant Cψ such that, for all ε > 0

∑
n

|λf (n)λg(n+ l)|ψ

Y
(
k1+k2

2 − 1
)

2π(2n+ l)

� ∑
n≤CψY (k1+k2)

λf (n)λg(n+ l)

�τ(|l|)Y 1+ε(k1 + k2)(log(k1 + k2))−2+ε
∏

p≤(k1+k2)ε

(
1 +
|λ1(p)|
p

)(
1 +
|λ2(p)|
p

)
.

Case 1: φ is an incomplete Eisenstein series. Using Lemma 5.4.1, we have that

Sl(Y ) + S−l(Y )� 2k2−k1S(f, g)−1/2Y 1/2+ετ(l)2(log k2)−2+ε
∏
p≤k2

(
1 +
|λ1(p)|
p

)(
1 +
|λ2(p)|
p

)
.

We use the trivial bound ∑
1≤l<Y 1+ε

τ(l)2 � Y 1+ε

to see that

C−1
Y

∑
0<|l|<Y 1+ε

Sl(Y )� 2k2−k1Y 1/2+εMk1,k2(f, g).

Case 2: φ = uj,k2−k1 is a Hecke–Maaß cusp form. It is very similar to the above case,

where we employ Lemma 5.4.2 instead. While we sum Sl(Y ), we need to bound

∑
0<l<Y 1+ε

τ(l)cj(l)�

 ∑
0<l<Y 1+ε

τ(l)2

1/2 ∑
0<l<Y 1+ε

cj(l)
2

1/2

� Y 1+ε,

where the bound for the second sum over the Hecke eigenvalues follows from [47, p. 55].

To finish the proof of Theorem 5.5.1, we simply choose Y = Mk1,k2(f, g)−1. If

Mk1,k2(f, g) > 1, we take Y = 1.

5.6 Proofs of Theorem 5.1.1 and Theorem 5.1.2

Lemma 5.6.1. If k1 ≤ k2 and log k1 ≥ C log k2, for some absolute constant C, then

Mk1,k2(f, g)�ε (log k2)1/6+εL(1, sym2f)
1
4L(1, sym2g)

1
4 .
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Proof. The key input is [44, Lemma 2] which states that

L(1, sym2f)� (log log k1)−3 exp

∑
p≤k1

λf (p2)

p

 , (5.41)

and a similar statement holds for L(1, sym2g). As in [44, Lemma 3], we use the inequality

|x| ≤ 1
3 + 3

4x
2 and the Hecke relations λf (p2) = λf (p)2 − 1 to see that

∑
p≤k1

|λf (p)|
p

≤ 1

3

∑
p≤k1

1

p
+

3

4

∑
p≤k1

λf (p)2

p

=
13

12

∑
p≤k1

1

p
+

3

4

∑
p≤k1

λf (p2)

p

≤ 13

12
log log k1 +

3

4

∑
p≤k1

λf (p2)

p
+O(1).

Now the conclusion follows from (5.41) and the fact that log k1 � log k2.

5.6.1 Proof of Theorem 5.1.2

From the analysis in Section 5.2, it suffices to bound 〈uj,k2−k1Fk1 , Gk2〉 and 〈Ek2−k1(z|ψ)Fk1 , Gk2〉.

We have who cases, depending on the size of L(1, sym2f)L(1, sym2g).

Case (i): Suppose L(1, sym2f)L(1, sym2g) ≥ (log k2)−5/6. Then by Lemma 5.3.2, we

have that

|〈uj,k2−k1Fk1 , Gk2〉| �ε

(
1 +

k2 − k1

2

)1/2

(log k2)−1/12+ε.

For the Eisenstein case, from (5.15) we know that

Ek2−k1(z|ψ) = δk1=k2

3

π
Ψ(−1) +

1

2πi

∫
(1/2)

Ψ(−s)Ek2−k1(z, s)ds.

Hence

〈Ek2−k1(z|ψ)Fk1 , Gk2〉 = δf=g
3

π
Ψ(−1) +

∫ ∞
−∞

Ψ

(
−1

2
− it

)〈
Ek2−k1

(
·, 1

2
+ it

)
Fk1 , Gk2

〉
dt.

Now, using Lemma 5.3.1 and the fast decay of Ψ(s) given by (5.14), we see that

∣∣∣∣〈Ek2−k1(z|ψ)Fk1 , Gk2〉 − δf=g
3

π
Ψ(−1)

∣∣∣∣�ε (log k2)−
1
12

+ε(1 + k2 − k1)1/2.
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Hence the conclusion follows if

k2 − k1 ≤ log k
1/6−ε
2 . (5.42)

Case (ii): Suppose L(1, sym2f)L(1, sym2g) ≤ (log k2)−5/6. Then we deduce the previous

Lemma that Mk1,k2(f, g)�ε (log k2)−
1
24

+ε. The conclusion follows from Theorem 5.5.1 as

long as k2 − k1 ≤ c log log k2, for some constant c. If we optimise out choices, we can let

any c < 1
12 log 2 � 0.12.

5.6.2 Proof of Theorem 5.1.1

It suffices to to bound
〈
ujR

k2
k1
Fk1 , Gk2

〉
and

〈
E(z|ψ)Rk2

k1
Fk1 , Gk2

〉
.

We begin with the cusp form case. From Lemma 5.4.2,
〈
ujR

k2
k1
Fk1 , Gk2

〉
is small when

k2 − k1 ≥ Nε, for some Nε large enough depending only ε. When k2 − k1 ≤ Nε, we just

combine Lemma 5.4.2 and Lemma 5.5.1 depending on the size of L(1, sym2f)L(1, sym2g),

as in the previous proof.

For the Eisenstein case, we use that

〈
E(z|ψ)Rk2

k1
Fk1 , Gk2

〉
− δf=g

3

π
Ψ(−1) =

∫ ∞
−∞

Ψ

(
−1

2
− it

)〈
E

(
·, 1

2
+ it

)
Rk2
k1
Fk1 , Gk2

〉
dt.

If k2 − k1 ≤ Nε, the conclusion follows again easily from Lemma 5.3.1 and the bound for

Ψ(s) on vertical lines given by (5.14) and from Lemma 5.5.1.

If k2−k1 goes to infinity, we need to obtain a bound for Ψ(s)s(s+ 1) . . . (s+n−1) in

terms of n. By repeated partial integration, this boils down to estimating ‖ψ(n)‖∞. One

problem is that these derivatives can grow arbitrarily fast in terms of n. We show that we

can work with an approximation ψε of ψ such that
〈
E(z|ψε)Rk2

k1
Fk1 , Gk2

〉
is very close to〈

E(z|ψ)Rk2
k1
Fk1 , Gk2

〉
and such that we can control ‖ψ(n)

ε ‖∞.

We need to construct a nontrivial function of compact support φ for which we control

the sizes of derivatives ‖φ(n)‖∞, for all n. From Denjoy–Carleman Theorem [86, p. 380],

we deduce that, for any δ > 0, there exists φ ∈ C∞(R) supported on [−1, 1] such that∫
R φ(x)dx = 1 and ‖φ(n)‖ �δ n

(1+δ)n, for all n. From now on we consider δ fixed (we will

choose it later).

For all ε > 0, we define φε(x) = 1
εφ
(
x
ε

)
. Then clearly φε is supported on [−ε, ε] and
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R φε(x)dx = 1. Now let any ψ ∈ Cb(0,∞). We consider the convolution

ψε(x) := (ψ ∗ φε)(x) =

∫
R
ψ(y)φε(x− y)dy,

which is clearly compactly supported in (0,∞), for ε small enough. It is not hard to see

that

‖ψ − ψε‖∞ ≤ ε‖ψ′‖∞.

Hence, for any u, v ∈ Lk(X) such that ‖u‖22 = ‖v‖22 = 1, we have

|〈E(z|ψ)u, v〉 − 〈E(z|ψε)u, v〉| =
∣∣∣∣∫
X

(E(z|ψ)− E(z|ψε))uvdµ(z)

∣∣∣∣
=

∣∣∣∣∫ ∞
0

∫ 1

0
(ψ(y)− ψε(y))u(x)v(z)

dxdy

y2

∣∣∣∣
�ψ ε,

since there are Oψ(1) copies of the fundamental domain for which ψ(y)− ψε(y) 6= 0 and

∫
Γ\H
|uv|dµ(z) ≤

∫
Γ\H

|u|2 + |v|2

2
dµ(z) = 1.

This shows it is enough to consider
〈
E(z|ψε)Rk2

k1
Fk1 , Gk2

〉
. Clearly,

〈
E(z|ψε)Rk2

k1
Fk1 , Gk2

〉
= δf=g

3

π
Ψε(−1) +

∫ ∞
−∞

Ψε

(
−1

2
− it

)〈
E

(
·, 1

2
+ it

)
Rk2
k1
Fk1 , Gk2

〉
dt,

and we have that

Ψε(−1) = Ψ(−1) +Oψ(ε).

From definition of ψε, we have ‖ψ(k)
ε ‖∞ �ψ

k(1+δ)k

εk
. Denote by Ψε the Mellin transform

of ψε. From repeated partial integration, we see that for |σ| ≤ 2, where s = σ + it, we

have

Ψε(s)s(s+ 1) . . . (s+ k − 1)�ψ

(
kCψ
ε

)k
kδk,

for some constant Cψ depending on the support of ψ.

For simplicity of notation, let α = k2−k1
2 . Choose ε = α−δ/2. We apply Lemma 5.3.1
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and choose k = α+ 3. We have

A(f, g, ψε) :=

∣∣∣∣∫ ∞
−∞

Ψε

(
−1

2
− it

)〈
E

(
·, 1

2
+ it

)
Rk2
k1
Fk1 , Gk2

〉
dt

∣∣∣∣
�

Γ
(
k1+k2

2

)1/2

Γ(k2)1/2Γ(α)1/2
k

1/2
2 (Cψα)(1+ 3δ

2 )α .

Hence

logA(f, g, ψε) ≤
(

1

2
+

3δ

2

)
α logα− α

2
log k2 +O(log k2 + α).

The conclusion follows if we pick δ = 1/12.
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